2,858 research outputs found
Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment
A rapidly increasing number of chemicals, or their degradation products, are being recognized as possessing estrogenic activity, albeit usually weak. We have found that effluent from sewage treatment works contains a chemical, or mixture of chemicals, that induces vitellogenin synthesis in male fish maintained in the effluent, thus indicating that the effluent is estrogenic. The effect was extremely pronounced and occurred at all sewage treatment works tested. The nature of the chemical or chemicals causing the effect is presently not known. However, we have tested a number of chemicals known to be estrogenic to mammals and have shown that they are also estrogenic to fish; that is, no species specificity was apparent. Many of these weakly estrogenic chemicals are known to be present in effluents. Further, a mixture of different estrogenic chemicals was considerably more potent than each of the chemicals when tested individually, suggesting that enhanced effects could occur when fish are exposed simultaneously to various estrogenic chemicals (as is likely to occur in rivers receiving effluent). Subsequent work should determine whether exposure to these chemicals at the concentrations present in the environment leads to any deleterious physiological effects
Body fat measurement in adolescent girls with type 1 diabetes: a comparison of skinfold equations against dual-energy X-ray absorptiometry.
AIM: Skinfold measurement is an inexpensive and widely used technique for assessing the percentage of body fat (%BF). This study assessed the accuracy of prediction equations for %BF based on skinfold measurements compared to dual-energy X-ray absorptiometry (DXA) in girls with type 1 diabetes and healthy age-matched controls. METHODS: We included 49 healthy girls and 44 girls with diabetes aged 12-19 years old, comparing the predicted %BF based on skinfold measurements and the %BF values obtained by a Lunar DPX-L scanner. The agreement between the methods was assessed using an Bland-Altman plot. RESULTS: The skinfold measurements were significantly higher in girls with diabetes (p = 0.003) despite a nonsignificant difference in total %BF (p = 0.1). A significant association between bias and %BF was found for all tested equations in the Bland-Altman plots. Regression analysis showed that the association between skinfold measurements and %BF measured by DXA differed significantly (p = 0.039) between the girls with diabetes and the healthy controls. CONCLUSION: The accuracy of skinfold thickness equations for assessment of %BF in adolescent girls with diabetes is poor in comparison with DXA measurements as criterion. Our findings highlight the need for the development of new prediction equations for girls with type 1 diabetes.This study received financial support from the Research Committee of Örebro County Council and the Swedish Child Diabetes Foundation (Barndiabetes fonden).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/apa.1336
Objectively measured physical activity and fat mass in a large cohort of children
Background Previous studies have been unable to characterise the association between physical activity and obesity, possibly because most relied on inaccurate measures of physical activity and obesity.
Methods and Findings We carried out a cross sectional analysis on 5,500 12-year-old children enrolled in the Avon Longitudinal Study of Parents and Children. Total physical activity and minutes of moderate and vigorous physical activity (MVPA) were measured using the Actigraph accelerometer. Fat mass and obesity (defined as the top decile of fat mass) were measured using the Lunar Prodigy dual x-ray emission absorptiometry scanner. We found strong negative associations between MVPA and fat mass that were unaltered after adjustment for total physical activity. We found a strong negative dose-response association between MVPA and obesity. The odds ratio for obesity in adjusted models between top and the bottom quintiles of minutes of MVPA was 0.03 (95% confidence interval [CI] 0.01-0.13, p-value for trend < 0.0001) in boys and 0.36 (95% CI 0.17-0.74, p-value for trend = 0.006) in girls.
Conclusions We demonstrated a strong graded inverse association between physical activity and obesity that was stronger in boys. Our data suggest that higher intensity physical activity may be more important than total activity
Predictive validity and classification accuracy of actigraph energy expenditure equations and cut-points in young children
Objectives: Evaluate the predictive validity of ActiGraph energy expenditure equations and the classification accuracy of physical activity intensity cut-points in preschoolers. Methods: Forty children aged 4–6 years (5.3±1.0 years) completed a ~150-min room calorimeter protocol involving age-appropriate sedentary, light and moderate-to vigorous-intensity physical activities. Children wore an ActiGraph GT3X on the right mid-axillary line of the hip. Energy expenditure measured by room calorimetry and physical activity intensity classified using direct observation were the criterion methods. Energy expenditure was predicted using Pate and Puyau equations. Physical activity intensity was classified using Evenson, Sirard, Van Cauwenberghe, Pate, Puyau, and Reilly, ActiGraph cut-points. Results: The Pate equation significantly overestimated VO2 during sedentary behaviors, light physical activities and total VO2 (P<0.001). No difference was found between measured and predicted VO2 during moderate-to vigorous-intensity physical activities (P = 0.072). The Puyau equation significantly underestimated activity energy expenditure during moderate-to vigorous-intensity physical activities, light-intensity physical activities and total activity energy expenditure (P<0.0125). However, no overestimation of activity energy expenditure during sedentary behavior was found. The Evenson cut-point demonstrated significantly higher accuracy for classifying sedentary behaviors and light-intensity physical activities than others. Classification accuracy for moderate-to vigorous-intensity physical activities was significantly higher for Pate than others. Conclusion: Available ActiGraph equations do not provide accurate estimates of energy expenditure across physical activity intensities in preschoolers. Cut-points of ≤25counts⋅15 s−1 and ≥420 counts⋅15 s−1 for classifying sedentary behaviors and moderate-to vigorous-intensity physical activities, respectively, are recommended
Practical utility and reliability of whole-room calorimetry in young children
The use of whole-room calorimetry (WRC) in young children can increase our understanding of children's energy balance. However, studies using WRC in young children are rare due to concerns about its feasibility. To assess the feasibility of WRC in young children, forty children, aged 4-6 years, were asked to follow a graded activity protocol while in a WRC. In addition, six children participated in two additional resting protocols to examine the effect of diet-induced thermogenesis on resting energy expenditure (REE) measures and the reliability of REE measurement. Refusals to participate and data loss were quantified as measures of practical utility, and REE measured after an overnight fast and after a 90-min fast were compared. In addition, both were compared to predicted BMR values using the Schofield equation. Our results showed that thirty (78·9 %) participants had acceptable data for all intensities of the activity protocol. The REE values measured after a 90-min fast (5·07 (sd 1·04) MJ/d) and an overnight fast (4·73 (sd 0·61) MJ/d) were not significantly different from each other (P = 0·472). However, both REE after an overnight fast and a 90-min fast were significantly higher than predicted BMR (3·96 (sd 0·18) MJ/d) using the Schofield equation (P = 0·024 and 0·042, respectively). We conclude that, with a developmentally sensitive approach, WRC is feasible and can be standardised adequately even in 4- to 6-year-old children. In addition, the effect of a small standardised breakfast, approximately 90 min before REE measurements, is likely to be small
An investigation of patterns of children's sedentary and vigorous physical activity throughout the week.
BACKGROUND: Participation in higher intensity activity (i.e. vigorous physical activity [VPA]) appears more consistently associated with lower adiposity, unfortunately little is known about the nature and patterns of VPA participation in children. OBJECTIVE: To examine the volume and patterns of vigorous and sedentary activity during different segments of the week (weekend, school-based and out-of-school). We also investigated differences by sex, socioeconomic status (SES) and weight status. DESIGN: A cross-sectional study including 1568 UK children aged 9-10 years. OUTCOME MEASURES: Sedentary activity (mins), total activity (counts/min) and VPA (mins) were measured by accelerometry. Using a series of 2 level mixed effects linear regression models we tested differences across the segmented week (school time [0900-1500] vs. out-of-school time [0700-0900 & 1500-2100]; and weekday vs. weekend); all models were adjusted for sex, weight status (gender- and age-specific body mass index [BMI] cut points), SES, age and accelerometer registered wear time. RESULTS: Boys and girls accumulated higher VPA out-of-school compared to during school (boys mean ± SD 16.9 ± 9.6 vs 12.6 ± 5.8; girls, 13.1 ± 7.7 vs 8.2 ± 4.0, both p 0.05). Less time was spent sedentary on weekdays compared to weekends (p < 0.001). Although boys were more physically active and girls accumulated more sedentary time, the overall pattern in which their physical activity intensity varied across the various day segments was similar when stratified by weight status and SES; and large volumes of sedentary time were observed each hour across the day. CONCLUSIONS: The promotion of VPA during the weekend may hold the greatest promise for increasing VPA. Interventions aimed at increasing physical activity in 9-10 year old children should aim to target all children independent of sex, SES or weight status.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Choice of activity-intensity classification thresholds impacts upon accelerometer-assessed physical activity-health relationships in children
It is unknown whether using different published thresholds (PTs) for classifying physical activity (PA) impacts upon activity-health relationships. This study explored whether relationships between PA (sedentary [SED], light PA [LPA], moderate PA [MPA], moderate-to-vigorous PA, vigorous PA [VPA]) and health markers differed in children when classified using three different PTs
Estimation of Free-Living Energy Expenditure by Heart Rate and Movement Sensing: A Doubly-Labelled Water Study.
BACKGROUND: Accurate assessment of energy expenditure (EE) is important for the study of energy balance and metabolic disorders. Combined heart rate (HR) and acceleration (ACC) sensing may increase precision of physical activity EE (PAEE) which is the most variable component of total EE (TEE). OBJECTIVE: To evaluate estimates of EE using ACC and HR data with or without individual calibration against doubly-labelled water (DLW) estimates of EE. DESIGN: 23 women and 23 men (22-55 yrs, 48-104 kg, 8-46%body fat) underwent 45-min resting EE (REE) measurement and completed a 20-min treadmill test, an 8-min step test, and a 3-min walk test for individual calibration. ACC and HR were monitored and TEE measured over 14 days using DLW. Diet-induced thermogenesis (DIT) was calculated from food-frequency questionnaire. PAEE (TEE ÷ REE ÷ DIT) and TEE were compared to estimates from ACC and HR using bias, root mean square error (RMSE), and correlation statistics. RESULTS: Mean(SD) measured PAEE and TEE were 66(25) kJ·day(-1)·kg(-1), and 12(2.6) MJ·day(-1), respectively. Estimated PAEE from ACC was 54(15) kJ·day(-1)·kg(-1) (p<0.001), with RMSE 24 kJ·day(-1)·kg(-1) and correlation r = 0.52. PAEE estimated from HR and ACC+HR with treadmill calibration were 67(42) and 69(25) kJ·day(-1)·kg(-1) (bias non-significant), with RMSE 34 and 20 kJ·day(-1)·kg(-1) and correlations r = 0.58 and r = 0.67, respectively. Similar results were obtained with step-calibrated and walk-calibrated models, whereas non-calibrated models were less precise (RMSE: 37 and 24 kJ·day(-1)·kg(-1), r = 0.40 and r = 0.55). TEE models also had high validity, with biases <5%, and correlations r = 0.71 (ACC), r = 0.66-0.76 (HR), and r = 0.76-0.83 (ACC+HR). CONCLUSIONS: Both accelerometry and heart rate may be used to estimate EE in adult European men and women, with improved precision if combined and if heart rate is individually calibrated.The study received financial support from Wellcome Trust, Unilever UK, and the Medical Research Council (MC_UU_12015/3).This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.013720
Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents.
CONTEXT: Sparse data exist on the combined associations between physical activity and sedentary time with cardiometabolic risk factors in healthy children.
OBJECTIVE: To examine the independent and combined associations between objectively measured time in moderate- to vigorous-intensity physical activity (MVPA) and sedentary time with cardiometabolic risk factors.
DESIGN, SETTING, AND PARTICIPANTS: Pooled data from 14 studies between 1998 and 2009 comprising 20 871 children (aged 4-18 years) from the International Children's Accelerometry Database. Time spent in MVPA and sedentary time were measured using accelerometry after reanalyzing raw data. The independent associations between time in MVPA and sedentary time, with outcomes, were examined using meta-analysis. Participants were stratified by tertiles of MVPA and sedentary time.
MAIN OUTCOME MEASURES: Waist circumference, systolic blood pressure, fasting triglycerides, high-density lipoprotein cholesterol, and insulin.
RESULTS: Times (mean [SD] min/d) accumulated by children in MVPA and being sedentary were 30 (21) and 354 (96), respectively. Time in MVPA was significantly associated with all cardiometabolic outcomes independent of sex, age, monitor wear time, time spent sedentary, and waist circumference (when not the outcome). Sedentary time was not associated with any outcome independent of time in MVPA. In the combined analyses, higher levels of MVPA were associated with better cardiometabolic risk factors across tertiles of sedentary time. The differences in outcomes between higher and lower MVPA were greater with lower sedentary time. Mean differences in waist circumference between the bottom and top tertiles of MVPA were 5.6 cm (95% CI, 4.8-6.4 cm) for high sedentary time and 3.6 cm (95% CI, 2.8-4.3 cm) for low sedentary time. Mean differences in systolic blood pressure for high and low sedentary time were 0.7 mm Hg (95% CI, -0.07 to 1.6) and 2.5 mm Hg (95% CI, 1.7-3.3), and for high-density lipoprotein cholesterol, differences were -2.6 mg/dL (95% CI, -1.4 to -3.9) and -4.5 mg/dL (95% CI, -3.3 to -5.6), respectively. Geometric mean differences for insulin and triglycerides showed similar variation. Those in the top tertile of MVPA accumulated more than 35 minutes per day in this intensity level compared with fewer than 18 minutes per day for those in the bottom tertile. In prospective analyses (N = 6413 at 2.1 years' follow-up), MVPA and sedentary time were not associated with waist circumference at follow-up, but a higher waist circumference at baseline was associated with higher amounts of sedentary time at follow-up.
CONCLUSION: Higher MVPA time by children and adolescents was associated with better cardiometabolic risk factors regardless of the amount of sedentary time
Revising on the run or studying on the sofa: prospective associations between physical activity, sedentary behaviour, and exam results in British adolescents.
BACKGROUND: We investigated prospective associations between physical activity/sedentary behaviour (PA/SED) and General Certificate of Secondary Education (GCSE) results in British adolescents. METHODS: Exposures were objective PA/SED and self-reported sedentary behaviours (screen (TV, Internet, Computer Games)/non-screen (homework, reading)) measured in 845 adolescents (14·5y ± 0·5y; 43·6 % male). GCSE results at 16y were obtained from national records. Associations between exposures and academic performance (total exam points) were assessed using multilevel mixed-effects linear regression adjusted for mood, BMI z-score, deprivation, sex, season and school; potential interactions were investigated. RESULTS: PA was not associated with academic performance. One-hour more accelerometer-assessed SED was associated with (β(95 % CI)) 6·9(1·5,12·4) more GCSE points. An extra hour of screen time was associated with 9.3(-14·3,-4·3) fewer points whereas an extra hour of non-screen time (reading/homework) was associated with 23·1(14·6,31·6) more points. Screen time was still associated with poorer scores after adjusting for objective PA/SED and reading/homework. CONCLUSIONS: An extra hour/day of screen time at 14·5y is approximately equivalent to two fewer GCSE grades (e.g., from B to D) at 16y. Strategies to achieve the right balance between screen and non-screen time may be important for improving academic performance. Concerns that encouraging more physical activity may result in decreased academic performance seem unfounded.The work of Kirsten Corder, Andrew J Atkin, and Esther M F van Sluijs was supported, wholly or in part, by the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence (RES-590-28-0002). Funding from the British Heart Foundation, Department of Health, Economic and Social Research Council, Medical Research Council, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. The work of Kirsten Corder, Esther M F van Sluijs, Ulf Ekelund and Soren Brage was supported by the Medical Research Council (MC_UP_1001/2, MC_U106179473, MC_UU_12015/3). The ROOTS data collection was supported by a programme grant to Ian Goodyer 074296/Z/04/Z from the Wellcome Trust and by the Medical Research Council Epidemiology Unit. The funders had no role in preparation of this manuscript. We thank Rebekah Steele and Charlotte Ridgway for assistance during data collection, and Kate Westgate and Stefanie Mayle from the physical activity technical team, and Paul Collings from the Physical Activity Programme, at the MRC Epidemiology Unit for their assistance in processing Actiheart data.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12966-015-0269-
- …
