236 research outputs found

    Tissue-specific variation in DNA methylation levels along human chromosome 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Most methods to scan the genome in different tissues for differentially methylated sites have focused on the methylation of CpGs in CpG islands, which are concentrations of CpGs often associated with gene promoters.</p> <p>Results</p> <p>Here, we use a methylation profiling strategy that is predominantly responsive to methylation differences outside of CpG islands. The method compares the yield from two samples of size-selected fragments generated by a methylation-sensitive restriction enzyme. We then profile nine different normal tissues from two human donors relative to spleen using a custom array of genomic clones covering the euchromatic portion of human chromosome 1 and representing 8% of the human genome. We observe gross regional differences in methylation states across chromosome 1 between tissues from the same individual, with the most striking differences detected in the comparison of cerebellum and spleen. Profiles of the same tissue from different donors are strikingly similar, as are the profiles of different lobes of the brain. Comparing our results with published gene expression levels, we find that clones exhibiting extreme ratios reflecting low relative methylation are statistically enriched for genes with high expression ratios, and <it>vice versa</it>, in most pairs of tissues examined.</p> <p>Conclusion</p> <p>The varied patterns of methylation differences detected between tissues by our methylation profiling method reinforce the potential functional significance of regional differences in methylation levels outside of CpG islands.</p

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact

    The impact of adoption of conservation agriculture on smallholder farmers’ food security in semi-arid zones of southern Africa

    Get PDF
    BACKGROUND In southern Africa, conservation agriculture (CA) has received a lot of research and promotional support from various organizations in the past decades. Conservation agriculture is largely promoted as one of the few win–win technologies affordable to farmers, in the sense that potentially it improves farmers’ yields (in the long term) at the same time conserving the environment. This is because conservation agriculture reduces nitrogen loss in the soil, promotes water and soil conservation and improves agronomic use efficiency of applied nutrients. However, some concerns have been raised over the feasibility of conservation agriculture on smallholder farms given constraints imposed by the biophysical and institutional realities under which smallholder farmers operate. The main aim of this study is to answer the question whether conservation agriculture is resulting in tangible livelihood outcomes to smallholder farmers. The counterfactual outcome approach was used to estimate ex post impact of conservation agriculture adoption on one of the key livelihood outcomes—food security. RESULTS The study that utilized a data set covering 1623 households in Zimbabwe, Malawi and Mozambique found no significant impact of conservation agriculture adoption on Food Consumption Score of farmers in Zimbabwe and Malawi. Possible reasons for the insignificant of CA impact on food security in Zimbabwe and Malawi could include the small land areas currently devoted to CA, and the failure to implement the full complement of practices necessary to set off the biophysical process that are expected to drive yield increases. In Mozambique, conservation agriculture significantly improved the Food Consumption Score for farmers exposed to the technology. A possible reason for effectiveness of CA in Mozambique could be due to the fact that often CA is being promoted together with other better cropping management practices such as timely weeding and improved seed varieties, which are poorly practiced by the generality of farmers in a country just emerging from a war period. CONCLUSION This paper provides one of the few ex post assessments of the impact of conservation agriculture adoption on household livelihood outcomes—food security. Given the mixed findings, the study suggests that conservation agriculture farmers in the three countries need to be supported to adopt a value chain approach to conservation agriculture. This entails the introduction of commercial or high-value crops in the conservation agriculture programmes, value addition on farmers produce, access to the necessary support services such as markets for seed, fertilizer, herbicides and equipment as well as reliable extension. We believe that under such circumstances conservation agriculture can effectively reduce food insecurity and poverty in the medium to long term

    Precision overhead irrigation is suitable for several Central Valley crops

    Full text link
    Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotton, tomato, onion and broccoli as an alternative to furrow and drip irrigation. With the exception of tomato, equal or increased yields were achieved with overhead irrigation. Many variables are involved in the choice of an irrigation system, but our results suggest that, with more research to support best management practices, overhead irrigation may be useful to a wider set of California farmers than currently use it

    Whole-genome array-CGH for detection of submicroscopic chromosomal imbalances in children with mental retardation

    Get PDF
    Chromosomal imbalances are the major cause of mental retardation (MR). Many of these imbalances are caused by submicroscopic deletions or duplications not detected by conventional cytogenetic methods. Microarray-based comparative genomic hybridization (array-CGH) is considered to be superior for the investigation of chromosomal aberrations in children with MR, and has been demonstrated to improve the diagnostic detection rate of these small chromosomal abnormalities. In this study we used 1 Mb genome-wide array-CGH to screen 48 children with MR and congenital malformations for submicroscopic chromosomal imbalances, where the underlying cause was unknown. All children were clinically investigated and subtelomere FISH analysis had been performed in all cases. Suspected microdeletion syndromes such as deletion 22q11.2, Williams-Beuren and Angelman syndromes were excluded before array-CGH analysis was performed. We identified de novo interstitial chromosomal imbalances in two patients (4%), and an interstitial deletion inherited from an affected mother in one patient (2%). In another two of the children (4%), suspected imbalances were detected but were also found in one of the non-affected parents. The yield of identified de novo alterations detected in this study is somewhat less than previously described, and might reflect the importance of which selection criterion of patients to be used before array-CGH analysis is performed. However, array-CGH proved to be a high-quality and reliable tool for genome-wide screening of MR patients of unknown etiology

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Carbon storage in soils of Southeastern Nigeria under different management practices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes in agricultural practices-notably changes in crop varieties, application of fertilizer and manure, rotation and tillage practices-influence how much and at what rate carbon is stored in, or released from, soils. Quantification of the impacts of land use on carbon stocks in sub-Saharan Africa is challenging because of the spatial heterogeneity of soil, climate, management conditions, and due to the lack of data on soil carbon pools of most common agroecosystems. This paper provides data on soil carbon stocks that were collected at 10 sites in southeastern Nigeria to characterize the impact of soil management practices.</p> <p>Results</p> <p>The highest carbon stocks, 7906-9510 gC m<sup>-2</sup>, were found at the sites representing natural forest, artificial forest and artificial grassland ecosystems. Continuously cropped and conventionally tilled soils had about 70% lower carbon stock (1978-2822 gC m<sup>-2</sup>). Thus, the soil carbon stock in a 45-year old <it>Gmelina </it>forest was 8987 gC m<sup>-2</sup>, whereas the parts of this forest, that were cleared and continuously cultivated for 15 years, had 75% lower carbon stock (1978 gC m<sup>-2</sup>). The carbon stock of continuously cropped and conventionally tilled soils was also 25% lower than the carbon stock of the soil cultivated by use of conservation tillage.</p> <p>Conclusion</p> <p>Introducing conservation tillage practices may reduce the loss of soil carbon stocks associated with land conversion. However, the positive effect of conservation tillage is not comparable to the negative effect of land conversion, and may not result in significant accumulation of carbon in southeastern Nigeria soils.</p
    corecore