3,242 research outputs found

    Disorder Unleashes Panic in Bitcoin Dynamics

    Get PDF
    The behaviour of Bitcoin owners is reflected in the structure and the number of bitcoin transactions encoded in the Blockchain. Likewise, the behaviour of Bitcoin traders is reflected in the formation of bullish and bearish trends in the crypto market. In light of these observations, we wonder if human behaviour underlies some relationship between the Blockchain and the crypto market. To address this question, we map the Blockchain to a spin-lattice problem, whose configurations form ordered and disordered patterns, representing the behaviour of Bitcoin owners. This novel approach allows us to obtain time series suitable to detect a causal relationship between the dynamics of the Blockchain and market trends of the Bitcoin and to find that disordered patterns in the Blockchain precede Bitcoin panic selling. Our results suggest that human behaviour underlying Blockchain evolution and the crypto market brings out a fascinating connection between disorder and panic in Bitcoin dynamics.Comment: 6 pages, 3 figure

    Full Counting Statistics of Non-Commuting Variables: the Case of Spin Counts

    Full text link
    We discuss the Full Counting Statistics of non-commuting variables with the measurement of successive spin counts in non-collinear directions taken as an example. We show that owing to an irreducible detector back-action, the FCS in this case may be sensitive to the dynamics of the detectors, and may differ from the predictions obtained with using a naive version of the Projection Postulate. We present here a general model of detector dynamics and path-integral approach to the evaluation of FCS. We concentrate further on a simple "diffusive" model of the detector dynamics where the FCS can be evaluated with transfer-matrix method. The resulting probability distribution of spin counts is characterized by anomalously large higher cumulants and substantially deviates from Gaussian Statistics.Comment: 11 pages, 3 figure

    Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson’s Models

    Get PDF
    Parkinson’s disease (PD) is the second most prevalent late-age onset neurodegenerative disorder, affecting 1% of the population after the age of about 60 years old and 4% of those over 80 years old, causing motor impairments and cognitive dysfunction. Increasing evidence indicates that Mediterranean diet (MD) exerts beneficial effects in maintaining health, especially during ageing and by the prevention of neurodegenerative disorders. In this regard, olive oil and its biophenolic constituents like hydroxytyrosol (HT) have received growing attention in the past years. Thus, in the current study we test the health-promoting effects of two hydroxytyrosol preparations, pure HT and HidroxÂź (HD), which is hydroxytyrosol in its “natural” environment, in the established invertebrate model organism Caenorhabditis elegans. HD exposure led to much stronger beneficial locomotion effects in wild type worms compared to HT in the same concentration. Consistent to this finding, in OW13 worms, a PD-model characterized by α-synuclein expression in muscles, HD exhibited a significant higher effect on α-synuclein accumulation and swim performance than HT, an effect partly confirmed also in swim assays with the UA44 strain, which features α-synuclein expression in DA-neurons. Interestingly, beneficial effects of HD and HT treatment with similar strength were detected in the lifespan and autofluorescence of wild-type nematodes, in the neuronal health of UA44 worms as well as in the locomotion of rotenone-induced PD-model. Thus, the hypothesis that HD features higher healthspan-promoting abilities than HT was at least partly confirmed. Our study demonstrates that HD polyphenolic extract treatment has the potential to partly prevent or even treat ageing-related neurodegenerative diseases and ageing itself. Future investigations including mammalian models and human clinical trials are needed to uncover the full potential of these olive compounds.Peer Reviewe

    On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density

    Get PDF
    We are concerned with the long time behaviour of solutions to the fractional porous medium equation with a variable spatial density. We prove that if the density decays slowly at infinity, then the solution approaches the Barenblatt-type solution of a proper singular fractional problem. If, on the contrary, the density decays rapidly at infinity, we show that the minimal solution multiplied by a suitable power of the time variable converges to the minimal solution of a certain fractional sublinear elliptic equation.Comment: To appear in DCDS-

    Survival of dental implants in patients with oral cancer treated by surgery and radiotherapy: a retrospective study

    Get PDF
    BACKGROUND: The aim of this retrospective study was to evaluate the survival of dental implants placed after ablative surgery, in patients affected by oral cancer treated with or without radiotherapy. METHODS: We collected data for 34 subjects (22 females, 12 males; mean age: 51 ± 19) with malignant oral tumors who had been treated with ablative surgery and received dental implant rehabilitation between 2007 and 2012. Postoperative radiation therapy (less than 50 Gy) was delivered before implant placement in 12 patients. A total of 144 titanium implants were placed, at a minimum interval of 12 months, in irradiated and non-irradiated residual bone. RESULTS: Implant loss was dependent on the position and location of the implants (P = 0.05-0.1). Moreover, implant survival was dependent on whether the patient had received radiotherapy. This result was highly statistically significant (P < 0.01). Whether the implant was loaded is another highly significant (P < 0.01) factor determinin

    The Protection of Zinc against Acute Cadmium Exposure: A Morphological and Molecular Study on a BBB In Vitro Model

    Get PDF
    Cadmium (Cd) is a well-known occupational and environmental pollutant worldwide, and its toxicity is widely recognised. Cd is reported to increase the permeability of the blood-brain barrier (BBB) and to penetrate and accumulate in the brain. Although many lines of evidence show that Cd toxicity is induced by different mechanisms, one of the best known is the Cd-dependent production of reactive oxygen species (ROS). Zinc is a trace element known as coenzyme and cofactor for many antioxidant proteins, such as metallothioneins and superoxide dismutase enzymes. To date, very little is known about the role of Zn in preventing Cd-induced blood-brain barrier (BBB) alterations. The goal of this study was to test the Zn antioxidant capacity against Cd-dependent alterations in a rat brain endothelial cell line (RBE4), as an in vitro model for BBB. In order to mimic acute Cd poisoning, RBE4 cells were treated with CdCl2 30 mu M for 24 h. The protective role of ZnCl2 (50 mu M) was revealed by evaluating the cell viability, reactive oxygen species (ROS) quantification, cytochrome C distribution, and the superoxide dismutase (SOD) protein activity. Additionally, the effectiveness of Zn in counteracting the Cd-induced damage was investigated by evaluating the expression levels of proteins already known to be involved in the Cd signalling pathway, such as GRP78 (an endoplasmic reticulum (ER) stress protein), caspase3 pro- and cleaved forms, and BAX. Finally, we evaluated if Zn was able to attenuate the alterations of zonula occludens-1 (ZO-1), one of the tight-junction (TJ) proteins involved in the formation of the BBB. Our data clearly demonstrate that Zn, by protecting from the SOD activity impairment induced by Cd, is able to prevent the triggering of the Cd-dependent signalling pathway that leads to ZO-1 dislocation and downregulation, and BBB damage

    Study of Oxidation and Combustion Characteristics of Iron Nanoparticles under Idealized and Enginelike Conditions

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher.[EN] The present work includes findings from proof-of-principle feasibility studies on iron nanopowder combustion under idealized, enginelike, and real engine conditions. The study was conducted under the scope of recent interest in metallic nanoparticles as alternative fuels for internal combustion engines. More specifically, Fe nanoparticles with different morphologies and average primary particle sizes ranging from 25 to 85 nm were studied with respect to their oxidation characteristics via thermogravimetric analysis as well as in customized shock tube, constant-volume vessel, and compression-ignition (CI) engine configurations. Combusted powder samples were in all cases examined via in situ and ex situ techniques for the identification of combustion products and their morphologies. The findings facilitated the determination of the main phenomena involved during oxidation. The results verified that combustion of Fe nanoparticles in a slightly modified CI engine is feasible, albeit with various technological challenges related to ignition and scavenging that inhibit combustion quality.The authors thank the European Commission for partial funding of this work through the Project “COMETNANO” (FP7-NMP4-SL-2009-229063).Mandilas, C.; Karagiannakis, G.; Konstandopoulos, AG.; Beatrice, C.; Lazzaro, M.; Di Blasio, G.; Molina, S.... (2016). Study of Oxidation and Combustion Characteristics of Iron Nanoparticles under Idealized and Enginelike Conditions. Energy and Fuels. 30(5):4318-4330. https://doi.org/10.1021/acs.energyfuels.6b00121S4318433030

    Discovery of the 151^{151}Eu α\alpha decay

    Full text link
    We report on the first compelling observation of α\alpha decay of 151^{151}Eu to the ground state of 147^{147}Pm. The measurement was performed using a 6.15 g Li6_6Eu(BO3_3)3_3 crystal operated as a scintillating bolometer. The Q-value and half-life measured are: Q = 1948.9±6.9(stat.)±5.1(syst.)\pm 6.9(stat.) \pm 5.1(syst.) keV, and T1/2=(4.62±0.95(stat.)±0.68(syst.))×1018_{1/2}=\left( 4.62\pm0.95(stat.)\pm0.68(syst.)\right) \times 10^{18} y . The half-life prediction of nuclear theory using the Coulomb and proximity potential model are in good agreement with this experimental result

    Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    Get PDF
    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.Comment: 58 page

    Predictive Value of MR-proADM in the Risk Stratification and in the Adequate Care Setting of COVID-19 Patients Assessed at the Triage of the Emergency Department

    Get PDF
    In the past two pandemic years, Emergency Departments (ED) have been overrun with COVID-19-suspicious patients. Some data on the role played by laboratory biomarkers in the early risk stratification of COVID-19 patients have been recently published. The aim of this study is to assess the potential role of the new biomarker mid-regional proadrenomedullin (MR-proADM) in stratifying the in-hospital mortality risk of COVID-19 patients at the triage. A further goal of the present study is to evaluate whether MR-proADM together with other biochemical markers could play a key role in assessing the correct care level of these patients. Data from 321 consecutive patients admitted to the triage of the ED with a COVID-19 infection were analyzed. Epidemiological; demographic; clinical; laboratory; and outcome data were assessed. All the biomarkers analyzed showed an important role in predicting mortality. In particular, an increase of MR-proADM level at ED admission was independently associated with a threefold higher risk of IMV. MR-proADM showed greater ROC curves and AUC when compared to other laboratory biomarkers for the primary endpoint such as in-hospital mortality, except for CRP. This study shows that MR-proADM seems to be particularly effective for early predicting mortality and the need of ventilation in COVID-19 patients admitted to the ED
    • 

    corecore