
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2015.35.xx
DYNAMICAL SYSTEMS
Volume 35, Number 12, December 2015 pp. X–XX

ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO THE

FRACTIONAL POROUS MEDIUM EQUATION

WITH VARIABLE DENSITY

Gabriele Grillo and Matteo Muratori

Dipartimento di Matematica

Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Fabio Punzo

Dipartimento di Matematica “F. Enriques”
Università di Milano
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Abstract. We are concerned with the long time behaviour of solutions to

the fractional porous medium equation with a variable spatial density. We

prove that if the density decays slowly at infinity, then the solution approaches
the Barenblatt-type solution of a proper singular fractional problem. If, on

the contrary, the density decays rapidly at infinity, we show that the minimal

solution multiplied by a suitable power of the time variable converges to the
minimal solution of a certain fractional sublinear elliptic equation.
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1. Introduction. We investigate the asymptotic behaviour, as t→∞, of nonneg-
ative solutions to the following parabolic nonlinear, degenerate, nonlocal weighted
problem: {

ρ(x)ut + (−∆)s(um) = 0 in Rd × (0,∞) ,

u = u0 on Rd × {0} ,
(1)

where the initial datum u0 is nonnegative and belongs to

L1
ρ(Rd) =

{
u : ‖u‖1,ρ =

∫
Rd
|u(x)| ρ(x)dx <∞

}
and the weight ρ is assumed to be positive, locally essentially bounded away from
zero (namely ρ−1 ∈ L∞loc(Rd)) and to satisfy suitable decay conditions at infinity,
which we shall specify later.

As for the parameters involved, we shall assume throughout the paper that m > 1
and d > 2s. Moreover, for all s ∈ (0, 1), the symbol (−∆)s denotes the fractional
Laplacian operator, that is

(−∆)s(φ)(x) = p.v. Cd,s

∫
Rd

φ(x)− φ(y)

|x− y|d+2s
dy ∀x ∈ Rd , ∀φ ∈ C∞c (Rd) , (2)

Cd,s being a suitable positive constant depending only on s and d. For less regular
functions, the fractional Laplacian is meant in the usual distributional sense.

For weights ρ(x) that decay slowly as |x| → ∞, we shall also be able to consider
the more general problem{

ρ(x)ut + (−∆)s(um) = 0 in Rd × (0,∞) ,

ρ(x)u = µ on Rd × {0} ,
(3)

where µ is a positive finite measure. More precisely, here we shall assume that ρ
complies with the following assumptions:

c|x|−γ0 ≤ ρ(x) ≤ C|x|−γ0 a.e. in B1 and c|x|−γ ≤ ρ(x) ≤ C|x|−γ a.e. in Bc1

for some γ ∈ [0, 2s), γ0 ∈ [0, γ] and 0 < c < C (BR denotes the ball of radius R
centered at x = 0, while BcR denotes its complement). Note that in this case ρ(x)
is allowed to have a singularity at x = 0.

The local version of problem (1), that is{
ρ(x)ut −∆(um) = 0 in Rd × (0,∞) ,

u = u0 on Rd × {0} ,
(4)

has been largely studied in the literature (see e.g. [28, 18, 19, 26, 39, 31, 21, 22]).
In particular, for d ≥ 3, it is shown that (4) admits a unique very weak solution
if ρ(x) decays slowly as |x| → ∞, while nonuniqueness prevails when ρ(x) decays
fast enough as |x| → ∞. In the latter case, uniqueness can be restored by imposing
extra conditions at infinity on the solutions. Also note that, independently of the
behaviour of ρ(x) as |x| → ∞, existence and uniqueness of the so-called weak
energy solutions (namely solutions belonging to suitable functional spaces) hold
true (see [21]). Furthermore, the long time behaviour of solutions to problem (4)
has been addressed in [38, 37] and [27]. To be specific, in [37] it is proved that if
‖u0‖1,ρ = M > 0, ρ > 0 and ρ(x) ∼ |x|−γ as |x| → ∞, for some γ ∈ [0, 2), then the
solution u to problem (4) satisfies

lim
t→∞

‖u(t)− u∗M (t)‖1,ρ = 0
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and

lim
t→∞

tα ‖u(t)− u∗M (t)‖∞ = 0 .

Here, u∗M is the self-similar Barenblatt solution of mass
∫
Rd u

∗
Mρ = M , that is

u∗M (x, t) = t−αF
(
t−κ|x|

)
∀(x, t) ∈ Rd × (0,∞) ,

with

F (ξ) = (C − kξ2−γ)
1

m−1

+ ∀ξ ≥ 0

for suitable positive constants C and k depending on M , m, d, γ. Moreover,

α = (d− γ)κ , κ =
1

d(m− 1) + 2−mγ
.

We stress that u∗M solves the singular problem{
|x|−γut −∆(um) = 0 in Rd × (0,∞) ,

|x|−γu = Mδ on Rd × {0} ,

where M = ‖u0‖1,ρ and δ is the Dirac delta centred at x = 0.
Note that, for ρ ≡ 1 the same asymptotic results were shown in [20] and in [40].
On the contrary, in [27] it is proved that if ρ > 0 and ρ(x) ∼ |x|−γ as |x| → ∞,

for some γ > 2, then the minimal solution to problem (4), which is unique in the
class of solutions fulfilling

1

Rd−1

∫
∂BR

∫ t

0

um(x, τ) dτdS → 0 as R→∞

for all t > 0, satisfies

t
1

m−1u(x, t)→ (m− 1)−
1

m−1W
1
m (x) as t→∞ , uniformly w.r.t. x ∈ Rd .

Here W is the unique (minimal) positive solution to the sublinear elliptic equation

−∆W = ρW
1
m in Rd ,

and it is such that

lim
|x|→∞

W (x) = 0 .

Problem (1) with ρ ≡ 1, nonnegative initial data u0 in L1(Rd) and s ∈ (0, 1),
namely {

ut + (−∆)s(um) = 0 in Rd × (0,∞) ,

u = u0 on Rd × {0} ,
(5)

has been addressed in the breakthrough papers [13, 14] for m > 0. In particular,
existence, uniqueness and qualitative properties of solutions are studied. Moreover,
in [7] sharp quantitative a priori estimates for solutions are proved. The asymptotic
behaviour has recently been investigated in [41]. More precisely, it is first shown
that, for any M > 0, there exists a unique solution u∗M to the singular problem{

ut + (−∆)s(um) = 0 in Rd × (0,∞) ,

u = Mδ on Rd × {0} .

Furthermore, such u∗M has the following self-similar form:

u∗M (x, t) = t−αf(t−κ|x|) ∀(x, t) ∈ Rd × (0,∞) ,
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where

α =
d

d(m− 1) + 2s
, κ =

1

d(m− 1) + 2s

and the profile f : [0,∞) → (0,∞) is a bounded, Hölder continuous decreasing
function, with f(r) → 0 as r → ∞. In view of such properties, u∗M is still called
a Barenblatt-type solution. Then it is proved that the solution u to problem (5)
satisfies

lim
t→∞

‖u(t)− u∗M (t)‖1 = 0

and

lim
t→∞

tα ‖u(t)− u∗M (t)‖∞ = 0 .

Existence and uniqueness of nonnegative bounded solutions to problem (1) for
nonnegative initial data u0 ∈ L1

ρ(Rd) ∩ L∞(Rd) and strictly positive weights have
been investigated in [32, 33]. More precisely, it is proved that if γ ∈ (0, 2s) and
there exists C0 > 0 such that if

ρ(x) ≥ C0|x|−γ a.e. in Bc1 ,

then problem (1) admits a unique bounded solution. Furthermore, when γ ∈ (2s,∞)
and there exists C0 > 0 such that

ρ(x) ≤ C0|x|−γ a.e. in Bc1 , (6)

we have existence of solutions satisfying a proper decaying condition at infinity. In
the present paper we shall prove uniqueness within a certain class of solutions under
the weaker requirement that (6) holds true with d > 4s and γ ∈ (2s, d−2s]∩(4s,∞)
(see Theorem 2.3). Actually, for generic positive densities ρ ∈ L∞loc(Rd) such that
ρ−1 ∈ L∞loc(Rd), namely without assuming further conditions on ρ(x) as |x| → ∞,
one can also prove existence and uniqueness of weak energy solutions in the same
spirit as [21] (see Proposition 1). The point is that the uniqueness results of Theorem
2.3 hold for a more general notion of solution, and we shall use them as such.

The main goal of this paper is to study the large time behaviour of solutions to
problem (1). To this end, similarly to the results recalled above in the local case,
we shall distinguish two situations:

i) ρ(x) → 0 slowly as |x| → ∞, in the sense that for a suitable γ ∈ (0, 2s) there
holds

lim
|x|→∞

ρ(x)|x|γ = c∞ > 0 ; (7)

ii) ρ(x) → 0 rapidly as |x| → ∞, in the sense that for a suitable γ ∈ (2s,∞) (6)
holds true.

In case i) we shall describe the asymptotic behaviour of solutions to problem (3),
namely with initial data which can be positive finite measures. Such asymptotics
is obtained in terms of a Barenblatt-type solution to a proper nonlocal singular
problem, that is the unique solution uc∞M to{

c∞|x|−γut + (−∆)s(um) = 0 in Rd × (0,∞) ,

c∞|x|−γu = Mδ on Rd × {0} ,
(8)

where M > 0 is the (fixed) mass and c∞ is as in (7). Existence and uniqueness
of solutions to (8) actually follow from the results established in [23] for the more
general problem (3). In particular, they are ensured provided γ ∈ [0, 2s)∩ [0, d−2s].
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Coming back to the asymptotics of the solutions to the evolution equations con-
sidered, we shall show that

lim
t→∞

‖u(t)− uc∞M (t)‖1,|x|−γ = lim
t→∞

∫
Rd
|tαu(tκx, t)− uc∞M (x, 1)| |x|−γdx = 0 , (9)

where

α = (d− γ)κ , κ =
1

d(m− 1) + 2s−mγ
.

In order to prove (9), we partially follow the general strategy used in the literature
to prove similar convergence results (see e.g. [20, 40, 42, 39, 4, 41]). However, here
several technical difficulties arise, due to the simultaneous presence of the weight
ρ(x) and of the nonlocal operator (−∆)s. To overcome them, we adapt to the
present situation some ideas used in [23] to prove existence. The point is that a
different argument in the final convergence step has to be used. Indeed, in particular
in [39] and [41], convergence is proved in L∞ by exploiting regularity results for
solutions and for the Barenblatt profile, ensured by [15] and [1], respectively. Since
such regularity results by now are not available in our case, we cannot use the same
techniques.

In case ii), the long time behaviour of the minimal solution to problem (1) is
deeply linked with the minimal solution w to the following nonlocal sublinear elliptic
equation:

(−∆)sw = ρwα in Rd , (10)

where α = 1/m ∈ (0, 1). Note that the local case s = 1 has been thoroughly studied
(see e.g. [9, 36] and references therein). For general s ∈ (0, 1) it has been addressed
in [34], following the same line of arguments of [9]. However, in [34] it is supposed
that (6) holds true for γ > d (with d > 4s) and ρ ≥ 0 (with ρ 6≡ 0). Furthermore,
energy solutions have been dealt with. In the present work, existence of nontrivial
very weak solutions is established whenever (6) holds for γ > 2s (with d > 2s). In
doing this, a central role will be played by the solution to the linear equation

(−∆)sV = ρ in Rd .

We shall also establish uniqueness of very weak solutions to equation (10), satisfying
suitable extra conditions at infinity, assuming that d > 4s and that (6) holds for
γ > 4s.

As for asymptotics, we shall prove that

lim
t→∞

t
1

m−1u(x, t) = (m− 1)−
1

m−1w
1
m (x) ,

where w is the minimal positive (very weak) solution to (10) with α = 1/m and u is
the minimal solution to (1). Note that a similar result in bounded domains, when
ρ ≡ 1, has recently been shown in [5] (see Remark 3).

Let us mention that by our methods we cannot address the critical case in which
ρ(x) behaves like |x|−2s. In fact, in such case, we are not able either to construct
the asymptotic profile as in (i) or the minimal solution to the sublinear elliptic
equation as in (ii). Observe that for s = 1 the long time behaviour of solutions has
been investigated in [24] for m = 1, and in [29, 25] for m > 1. For 0 < s < 1 and
γ = 2s, the asymptotic behaviour of solutions is then an interesting open problem.

Organization of the paper. In Section 2 we give the definitions of solution to
problems (1) and (3); moreover, preliminary results concerning the well posedness
of the problems are stated. As for long time behaviour of solutions, our results both
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for fast decaying densities (Theorem 3.1) and for slowly decaying densities (Theorem
3.2) are stated in Section 3. In Section 4 we consider the sublinear elliptic equation
(10), and we show some new existence and uniqueness results for the corresponding
solutions in Theorems 4.4 and 4.5, which have also an independent interest. We
take advantage of such results in Section 5 in order to prove Theorem 3.1. Finally,
in Section 6 we prove Theorem 3.2.

In Appendix A the well posedness of problem (1) for rapidly decaying densities
is proved: here we improve in various directions previous results in [32].

2. Preliminary results. We start this section by providing a suitable definition
of weak solution to problem (1), which will be primarily interesting for the case
of rapidly decaying densities. We shall always assume ρ ∈ L∞loc(Rd) and ρ−1 ∈
L∞loc(Rd). Hereafter, by the symbol Ḣs(Rd) we shall denote the completion of
C∞c (Rd) w.r.t. the norm

‖φ‖Ḣs =
∥∥(−∆)

s
2 (φ)

∥∥
2
∀φ ∈ C∞c (Rd) .

Definition 2.1. A nonnegative function u is a weak solution to problem (1) corre-
sponding to the nonnegative initial datum u0 ∈ L1

ρ(Rd) if:

• u ∈ C([0,∞);L1
ρ(Rd)) ∩ L∞(Rd × (τ,∞)) for all τ > 0;

• um ∈ L2
loc((0,∞); Ḣs(Rd));

• for any ϕ ∈ C∞c (Rd × (0,∞)) there holds∫ ∞
0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt

−
∫ ∞

0

∫
Rd

(−∆)
s
2 (um)(x, t)(−∆)

s
2 (ϕ)(x, t) dxdt = 0 ;

(11)

• limt→0 u(t) = u0 in L1
ρ(Rd).

A classical notion in the literature is the following (see e.g. [14, Section 8.1]).

Definition 2.2. Let u be a weak solution to problem (1) (according to Definition
2.1). We say that u is a strong solution if, in addition, ut ∈ L∞((τ,∞);L1

ρ(Rd)) for
every τ > 0.

Existence and uniqueness of weak solutions to problem (1), by means of standard
techniques (see e.g. [13, 14, 21, 32]), are discussed in Appendix A. The first result
we provide reads as follows (for a sketch of proof see again Appendix A – Parts I
and II).

Proposition 1. Let ρ ∈ L∞loc(Rd) be positive and such that ρ−1 ∈ L∞loc(Rd). Then
there exists a unique weak solution u to problem (1), in the sense of Definition 2.1,
which is also a strong solution in the sense of Definition 2.2.

Let us introduce the Riesz kernel of the s-Laplacian:

I2s(x) =
ks,d
|x|d−2s

∀x ∈ Rd \ {0} , (12)

where ks,d is a suitable positive constant that depends only on s and d. Recall that
for a sufficiently regular function f there holds

(−∆)s (I2s ∗ f) = f ,

namely the convolution against I2s represents the operator (−∆)−s.
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2.1. Rapidly decaying densities. Given a weak solution u to (1) and any fixed
t0 > 0, let us set

U(t0;x, t) =

∫ t

t0

um(x, τ) dτ ∀(x, t) ∈ Rd × (t0,∞) .

When ρ(x) is a density that decays sufficiently fast as |x| → ∞, we shall often
need to deal with solutions to (1) which are meant in a more general sense with
respect to the one of Definition 2.1, namely what we call local strong solutions. The
corresponding definition is technical, and we leave it to Appendix A (see Definition
A.2 below). The result we present here concerns existence and uniqueness of local
strong solutions.

Theorem 2.3. Let ρ ∈ L∞(Rd) be positive and such that ρ−1 ∈ L∞loc(Rd). Let
u0 ∈ L1

ρ(Rd) be nonnegative. Assume in addition that ρ(x) ≤ C0 |x|−γ a.e. in Bc1
for some γ > 2s and C0 > 0. Then the weak solution to problem (1) provided by
Proposition 1 is the minimal solution in the class of local strong solutions (according
to Definition A.2 below) and satisfies

U(t0;x, t)→ 0 as |x| → ∞ (13)

for any fixed t0 > 0 and for all t > t0. More precisely, there holds

U(t0;x, t) ≤ C (I2s ∗ ρ)(x) for a.e. (x, t) ∈ Rd × (t0,∞) (14)

for some C > 0, whence (13) follows by Lemma 4.6 below. Furthermore:

(i) under the more restrictive assumption that d > 4s and γ ∈ (2s, d−2s]∩(4s,∞),
the solution is unique in the class of local strong solutions satisfying

um ∈ L1
(1+|x|)−d+2s(Rd × (t0, T )) ∀T > t0 > 0 ;

(ii) if u0 is also bounded, then u ∈ L∞(Rd× (0,∞)) and all the above results hold
true with t0 = 0 as well.

For the proof of Theorem 2.3, we refer the reader to Appendix A – Part III.

Remark 1. Note that, as concerns uniqueness, for d ≥ 6s the assumptions on γ
amount to γ > 2s.

2.2. Slowly decaying densities. In this subsection we deal with weights ρ(x)
which decay slowly as |x| → ∞. More precisely, we shall assume that the following
hypotheses are satisfied:

c|x|−γ0 ≤ ρ(x) ≤ C|x|−γ0 a.e. in B1 and c|x|−γ ≤ ρ(x) ≤ C|x|−γ a.e. in Bc1
(15)

for some γ ∈ [0, 2s), γ0 ∈ [0, γ] and 0 < c < C. Note that ρ(x) might possibly be
unbounded as x→ 0.

Below we recall the definition of weak solution to the more general problem (3)
given in [23, Definition 3.1]. Before doing it, following the same notation as in [30],
we need to introduce some notions of convergence in measure spaces. Let M(Rd)
be the cone of positive, finite measures on Rd. A sequence {µn} ⊂ M(Rd) is said
to converge to µ ∈M(Rd) in σ(M(Rd), Cb(Rd)) if

lim
n→∞

∫
Rd
φ(x) dµn =

∫
Rd
φ(x) dµ ∀φ ∈ Cb(Rd) ,
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where Cb(Rd) is the space of continuous, bounded functions in Rd. Analogous
definitions hold for σ(M(Rd), Cc(Rd)) and σ(M(Rd), C0(Rd)), where C0(Rd) is the
closure of Cc(Rd) w.r.t. the L∞(Rd) norm.

Definition 2.4. By a weak solution to problem (3), corresponding to the initial
datum µ ∈M(Rd), we mean a nonnegative function u such that:

u ∈ L∞((0,∞);L1
ρ(Rd)) ∩ L∞(Rd × (τ,∞)) ∀τ > 0 , (16)

um ∈ L2
loc((0,∞); Ḣs(Rd)) , (17)∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt

−
∫ ∞

0

∫
Rd

(−∆)
s
2 (um)(x, t) (−∆)

s
2 (ϕ)(x, t) dxdt = 0

(18)

for all ϕ ∈ C∞c (Rd × (0,∞)) and

lim
t→0

ρ u(t) = µ in σ(M(Rd), Cb(Rd)) .

It is plain that, when µ = ρ u0 ∈ L1(Rd), a solution to (1) with respect to
Definition 2.1 is also a solution to (3) with respect to Definition 2.4. However,
Definition 2.4 permits to handle more general initial data (positive, finite measures).
In particular, we cannot ask u ∈ C([0,∞);L1

ρ(Rd)). Nevertheless, thanks to the

fundamental Theorem 2.5 which we state below, when µ = ρ u0 ∈ L1(Rd) such two
solutions do coincide (provided the parameters γ, s and d meet the corresponding
assumptions).

We recall now some well posedness results proved in [23]. In fact, thanks to
the theory developed therein, we can guarantee existence and uniqueness of weak
solutions to (3) (according to Definition 2.4). Besides, Proposition 4.1 of [23] ensures
that ∫

Rd
u(x, t) ρ(x)dx = µ(Rd) ∀t > 0 , (19)

namely there is conservation of mass. This is actually a sole consequence of Defi-
nition 2.4 and the hypothesis γ ∈ [0, 2s).

The next result is a crucial one but its proof follows along known lines.

Theorem 2.5. Let d > 2s. Assume that ρ satisfies (15) for some γ ∈ [0, 2s) ∩
[0, d − 2s] and γ0 ∈ [0, γ]. Then there exists a weak solution u to problem (3), in
the sense of Definition 2.4, which satisfies the smoothing estimate

‖u(t)‖∞ ≤ K t−αµ(Rd)β ∀t > 0 , (20)

where K is a suitable positive constant depending only on m, γ, s, d, C and

α =
d− γ

(m− 1)(d− γ) + 2s− γ
, β =

2s− γ
(m− 1)(d− γ) + 2s− γ

. (21)

In particular, u(t) ∈ L1
ρ(Rd)∩L∞(Rd) for all t > 0. Moreover, u satisfies the energy

estimates∫ t2

t1

∫
Rd

∣∣(−∆)
s
2 (um) (x, t)

∣∣2 dxdt+
1

m+ 1

∫
Rd
um+1(x, t2) ρ(x)dx

=
1

m+ 1

∫
Rd
um+1(x, t1) ρ(x)dx

(22)
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and ∫ t2

t1

∫
Rd
|zt(x, t)|2 ρ(x)dxdt ≤ C ′ (23)

for all t2 > t1 > 0, where z = u
m+1

2 and C ′ is a positive constant that depends
only on m, t1, t2 and on

∫
Rd u

m+1(x, t1/2) ρ(x)dx. Furthermore, such solution is
unique.

Remark 2. (i) The smoothing effect (20) can be proved as in [23, Proposition
4.6]. In fact, such proof only relies on the validity of the fractional Sobolev
inequality

‖v‖2 d−γ
d−2s ,ρ

≤ C̃ ‖(−∆)s(v)‖2 ∀v ∈ Ḣs(Rd) ,

which, thanks to the assumptions on ρ, is a trivial consequence of

‖v‖2 d−γ
d−2s ,−γ

≤ CS,γ ‖(−∆)s(v)‖2 ∀v ∈ Ḣs(Rd) . (24)

For the validity of (24), we refer the reader to [23, Lemma 4.5] and references
quoted.

(ii) Thanks to the results of [23, Section 3.1] (which in turn go back to [14, Section
8.1]), or to the discussion in Appendix A – Part I (which applies to slowly
decaying densities as well), we have that the solutions provided by Theorem
2.5 are also strong. In particular, they belong to C((0,∞);L1

ρ(Rd)).
(iii) For d ≥ 4s the assumptions of Theorem 2.5 on γ amount to γ ∈ [0, 2s).

3. Main results: Large time behaviour of solutions. In this section we state
our main results for the asymptotics (as t → ∞) of the solutions to problems (1)
and (3) provided by Proposition 1 and Theorem 2.5, respectively.

3.1. Rapidly decaying densities. As concerns solutions to (1) when ρ(x) is a
density that decays sufficiently fast as |x| → ∞, we have the following result.

Theorem 3.1. Let ρ ∈ Cσloc(Rd) for some σ ∈ (0, 1), with ρ > 0. Let u0 ∈ L1
ρ(Rd)

be nonnegative. Assume in addition that ρ(x) ≤ C0|x|−γ in Bc1 for some γ > 2s
and C0 > 0. Let u be the (minimal) weak solution to problem (1) provided by
Proposition 1 and w be the very weak solution to the sublinear elliptic equation
(10), with α = 1/m, provided by Theorem 4.4 below (which is also minimal in the
class of solutions specified by the corresponding statement). Then,

lim
t→∞

t
1

m−1 u(x, t) = (m− 1)−
1

m−1 w
1
m (x) (25)

monotonically and in Lploc(Rd) for all p ∈ [1,∞).

Remark 3. Note that, if we introduce the relative error |u/U − 1|, where

U(x, t) = (m− 1)−
1

m−1 t−
1

m−1w
1
m (x)

(we shall prove below that w is strictly positive), then Theorem 3.1 implies that∣∣∣∣ u(x, t)

U(x, t)
− 1

∣∣∣∣→ 0 as t→∞ ,

at least locally. When ρ ≡ 1 and the problem is posed in a bounded domain, in [5]
the authors investigate the rate of convergence, uniformly in space, of such relative
error.
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Remark 4. Under the same assumptions as in Theorem 3.1, with in addition d > 4s
and γ > 4s, thanks to the uniqueness results of Theorem 2.3 and Theorem 4.4, we
can read the above asymptotic result as follows: any nontrivial local strong solution
u to (1) satisfying um ∈ L1

(1+|x|)−d+2s(Rd × (t0, T )) for all T > t0 > 0 converges, in

the sense of (25), to the unique nontrivial local weak and very weak solution w to
(10) (with α = 1/m) satisfying w ∈ L1

(1+|x|)−d+2s(Rd).

3.2. Slowly decaying densities. In the analysis of the long time behaviour of
solutions to (3) when ρ(x) is density that decays slowly as |x| → ∞, a major role is
played by the solution to the same problem in the particular case ρ(x) = c∞|x|−γ
and µ = Mδ, for given positive constants c∞ and M (namely, the solution to (8)).
From now on we shall denote such solution as uc∞M .

Let us define the positive parameters α and κ as follows:

α = (d− γ)κ , κ =
1

(m− 1)(d− γ) + 2s− γ
. (26)

Notice that α is the same parameter appearing in (21). It is immediate to check
that, for any given λ > 0, the function

uc∞M,λ(x, t) = λαuc∞M (λκx, λt)

is still a solution to problem (8). Hence, as a consequence of the uniqueness result
contained in Theorem 2.5, uc∞M,λ and uc∞M must necessarily coincide, that is

uc∞M (x, t) = λαuc∞M (λκx, λt) ∀t, λ > 0 , for a.e. x ∈ Rd . (27)

As already mentioned, the special solution uc∞M , thanks to the self-similarity identity
(27) it satisfies, will be crucial in the study of the asymptotic behaviour of any
solution to (3) (provided ρ complies with (28) as well). This is thoroughly analysed
in Section 6.

Our main result concerning the asymptotics of solutions to (3) is the following.

Theorem 3.2. Let d > 2s. Assume that ρ satisfies (15) for some γ ∈ [0, 2s) ∩
[0, d− 2s] and γ0 ∈ [0, γ], with in addition

lim
|x|→∞

ρ(x)|x|γ = c∞ > 0 . (28)

Let u be the unique weak solution to problem (3), in the sense of Definition 2.4,
provided by Theorem 2.5 and corresponding to µ ∈ M(Rd) as initial datum, with
µ(Rd) = M > 0. Then,

lim
t→∞

‖u(t)− uc∞M (t)‖1,|x|−γ = 0 (29)

or equivalently

lim
t→∞

∫
Rd
|tαu(tκx, t)− uc∞M (x, 1)| |x|−γ dx = 0 , (30)

where uc∞M is the Barenblatt solution defined as the unique solution to problem (8),
and the parameters α, κ are as in (26).

Notice once again that the range of γ for which the above theorem holds true
simplifies to [0, 2s) when d ≥ 4s, which is, to some extent, the maximal one for
which one can expect a similar result.

Theorem 3.1 will be proved in Section 5, while Theorem 3.2 will be proved in
Section 6.
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4. A fractional sublinear elliptic equation. Prior to analysing the asymptotic
behaviour of solutions to (1) when ρ(x) is a density that decays fast as |x| → ∞
(discussed in Section 5), we need to study the sublinear elliptic equation (10), which
naturally arises from such asymptotic analysis.

Let us recall that if ϕ is a smooth and compactly supported function defined in
Rd, we can consider its s-harmonic extension E(ϕ) to the upper half-space Rd+1

+ =

{(x, y) : x ∈ Rd, y > 0}, namely the unique smooth and bounded solution to the
problem {

div
(
y1−2s∇E(ϕ)

)
= 0 in Rd+1

+ ,

E(ϕ) = ϕ on ∂Rd+1
+ = Rd × {y = 0} .

It has been proved (see e.g. [11, 14, 10]) that

−µs lim
y→0+

y1−2s ∂E(ϕ)

∂y
(x, y) = (−∆)

s
(ϕ)(x) ∀x ∈ Rd ,

where µs = 22s−1Γ(s)
Γ(1−s) . It is therefore convenient to define the operators

Ls = div
(
y1−2s∇

)
,

∂

∂y2s
= −µs lim

y→0+
y1−2s ∂

∂y
.

We also denote by Xs the completion of C∞c (Rd+1
+ ∪ ∂Rd+1

+ ) w.r.t. the norm

‖ψ‖Xs =

(
µs

∫
Rd+1

+

y1−2s |∇ψ(x, y)|2 dxdy

) 1
2

∀ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ) .

Furthermore, by the symbol Xs
loc, we shall mean the space of all functions v such

that ψv ∈ Xs for any ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ).

It is possible to prove that there exists a well defined notion of trace on ∂Rd+1
+

for every function in Xs (see e.g. [14, Section 3.2], [8, Section 2] or [10, Section

3.1]). Moreover, for every v ∈ Ḣs(Rd) there exists a unique extension E(v) ∈ Xs

such that

E(v)(x, 0) = v(x) for a.e. x ∈ Rd

and

µs

∫
Rd+1

+

y1−2s〈∇E(v),∇ψ〉(x, y) dxdy =

∫
Rd

(−∆)s(v)(x) (−∆)s(ψ)(x, 0) dx

for any ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ).
Having at our disposal the above tools, we can provide suitable weak formulations

of problem (10) which deal with the harmonic extension. In fact, at a formal level,
looking for a solution w to (10) is the same as looking for a pair of functions (w, w̃)
solving the problem 

Lsw̃ = 0 in Rd+1
+ ,

w̃ = w on ∂Rd+1
+ ,

∂w̃

∂y2s
= ρwα on ∂Rd+1

+ ,

(31)

with 0 < α < 1.
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Definition 4.1. A local weak solution to problem (31) is a bounded nonnegative

function w such that, for some nonnegative w̃ ∈ Xs
loc ∩ L∞loc(Rd+1

+ ∪ ∂Rd+1
+ ) (what

we call a local extension for w), there holds w̃|∂Rd+1
+

= w and∫
Rd
wα(x)ψ(x, 0) ρ(x)dx = µs

∫
Rd+1

+

y1−2s〈∇w̃,∇ψ〉(x, y) dxdy

for any ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ).

Definition 4.2. A bounded, nonnegative function w is a very weak solution to
problem (10) if it satisfies∫

Rd
wα(x)ϕ(x) ρ(x)dx =

∫
Rd
w(x)(−∆)s(ϕ)(x) dx

for any ϕ ∈ C∞c (Rd).

Definition 4.3. A nonnegative function w ∈ Ḣs(Rd) is a weak solution to problem
(10) if it satisfies∫

Rd
wα(x)ψ(x, 0) ρ(x)dx =

∫
Rd

(−∆)
s
2 (w)(x)(−∆)

s
2 (ψ)(x, 0) dx

=µs

∫
Rd+1

+

y1−2s〈∇E(w),∇ψ〉(x, y) dxdy
(32)

for any ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ).

Note that a bounded weak solution is a solution to (10) in the sense of both
Definition 4.1 and Definition 4.2.

What follows in this section aims at studying existence and uniqueness of solu-
tions to (31) (and (10)), according to Definition 4.1 (and 4.2, 4.3). Our results are
the following.

Theorem 4.4 (existence). Let α ∈ (0, 1). Let ρ ∈ Cσloc(Rd) (for some σ ∈ (0, 1)) be
strictly positive and such that ρ(x) ≤ C0|x|−γ in Bc1 for some γ > 2s and C0 > 0.
Then there exists a local weak solution w to problem (31), which is minimal in
the class of nonidentically zero local weak solutions (according to Definition 4.1).
Moreover, w is a very weak solution to (10) (in the sense of Definition 4.2) and
satisfies the estimate

w(x) ≤ C(I2s ∗ ρ)(x) ∀x ∈ Rd (33)

for some C > 0.
Finally, if γ complies with the more restrictive condition

γ > 2s+
d− 2s

α+ 2
, (34)

then w is also a weak solution to (10) (according to Definition 4.3).

Theorem 4.5 (uniqueness). Let d > 4s and α ∈ (0, 1). Let ρ ∈ Cσloc(Rd) (for some
σ ∈ (0, 1)) be strictly positive and such that ρ(x) ≤ C0|x|−γ in Bc1 for some γ > 4s
and C0 > 0. Let w be the minimal solution to problem (31) provided by Theorem
4.4. Let w be any other local weak solution to problem (31) (according to Definition
4.1), which is also a very weak solution to problem (10) (according to Definition
4.2) and such that w 6≡ 0 and w ∈ L1

(1+|x|)−d+2s(Rd). Then w = w.
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The next lemma, which provides us with elementary estimates from above for
the Riesz potential of ρ, is key to our analysis. We skip the proof since it is just a
matter of routine computations which exploit decay and integrability properties of
I2s and ρ.

Lemma 4.6. Let d > 2s and ρ ≥ 0 be a measurable function. Assume in addition
that ρ(x) ≤ C(1+ |x|)−γ for some γ > 2s and C > 0. Then, I2s ∗ρ is a nonnegative
continuous function and there exists a constant K > 0 such that

(I2s ∗ ρ)(x) ≤ K (1 + |x|)−κ ∀x ∈ Rd ,

where:

(a) if γ < d, κ = γ − 2s;
(b) if γ = d, κ = d− 2s− ε for all ε > 0 (with K = K(ε));
(c) if γ > d, κ = d− 2s.

In view of Theorem 4.4 and Lemma 4.6, it is apparent that under the assumptions
of Theorem 4.5 the minimal solution w does belong to L1

(1+|x|)−d+2s(Rd).

4.1. Existence. Here we shall prove all the properties of w claimed in Theorem
4.4, except the fact that w is a very weak solution to problem (10) in the sense of
Definition 4.2 for all γ > 2s. This will be in fact a consequence of the asymptotic
analysis of Section 5.

Let us start off with some preliminaries. We consider first the following problem:
find (wR, w̃R) such that 

Lsw̃R = 0 in ΩR ,

w̃R = 0 on ΣR ,

w̃R = wR on ΓR ,
∂w̃R
∂y2s

= ρwαR on ΓR ,

(35)

where ΩR = {(x, y) ∈ Rd+1
+ : |(x, y)| < R}, ΣR = ∂ΩR ∩ {y > 0} and ΓR =

∂ΩR ∩ {y = 0}. We denote by Xs
0(ΩR) the completion of C∞c (ΩR ∪ ΓR) w.r.t. the

norm

‖ψ‖Xs0 (ΩR) =

(
µs

∫
ΩR

y1−2s|∇ψ(x, y)|2 dxdy

) 1
2

∀ψ ∈ C∞c (ΩR ∪ ΓR) .

Definition 4.7. A weak solution to problem (35) is a pair of nonnegative functions
(wR, w̃R) such that:

• wαR ∈ L1(BR), w̃R ∈ Xs
0(ΩR);

• w̃R|ΓR = wR;
• for any ψ ∈ C∞c (ΩR ∪ ΓR) there holds∫

BR

wαR(x)ψ(x, 0) ρ(x)dx = µs

∫
ΩR

y1−2s〈∇w̃R,∇ψ〉(x, y) dxdy . (36)

The next existence result concerning problem (35) can be proved by standard
variational methods (see e.g. [8]).

Proposition 2. Let α ∈ (0, 1). Let ρ ∈ L∞loc(Rd) be positive and such that ρ−1 ∈
L∞loc(Rd). Then there exists a non-identically zero weak solution (wR, w̃R) to problem
(35), in the sense of Definition 4.7.
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The following regularity and comparison results for problem (35) will be crucial
in the proof of Theorem 4.4 (specially as for minimality).

Proposition 3. Let α ∈ (0, 1). Let ρ ∈ L∞loc(Rd) be nonnegative and such that
ρ−1 ∈ L∞loc(Rd).

(i) Take a subsolution (w
(1)
R , w̃

(1)
R ) and a supersolution (w

(2)
R , w̃

(2)
R ) to problem (35)

(in a weak sense, in agreement with Definition 4.7). Assume that w̃
(1)
R , w̃

(2)
R ≥

0 a.e. in ΩR, w
(1)
R ≥ 0 a.e. in BR, w

(2)
R > 0 a.e. in BR and w̃

(1)
R |ΣR ≤ w̃

(2)
R |ΣR

a.e. in ΣR. Then w̃
(1)
R ≤ w̃

(2)
R a.e. in ΩR and w

(1)
R ≤ w

(2)
R a.e. in BR.

(ii) Suppose in addition that ρ ∈ Cσloc(Rd) for some σ ∈ (0, 1). Let (wR, w̃R)
be a weak solution to problem (35), in the sense of Definition 4.7, such that
wR ∈ L∞(BR) and w̃R ∈ L∞(ΩR). Then (in particular) w̃R ∈ C(Ωr) for all
0 < r < R and either (wR, w̃R) ≡ (0, 0) or wR > 0 in BR and w̃R > 0 in ΩR.

Proof. Statement (i) follows by performing minor modifications to the proof of [8,
Lemma 5.3]. Actually the strategy of proof goes back to the pioneering paper [9]:
let us mention that the strict positivity of the supersolution and the fact that the
nonlinearity is sublinear are essential. Statement (ii) is due to the regularity results
in [10]. In fact, since (wR, w̃R) is bounded and ρ(x) and f(w) := wα are Hölder
functions, Lemma 4.5 of [10] ensures that w̃R and ∂w̃R

∂y2s are also Hölder continuous

in Ωr for all 0 < r < R. Corollary 4.12 of [10] then entails the assertion (the same
argument works upon replacing d(x)u(x) there with −ρ(x)uα(x)).

We are now in position to prove Theorem 4.4 as concerns the existence of a
minimal local weak solution to (31). The fact that such solution is also a very weak
solution to (10) (according to Definition 4.2) will be deduced in the end of the proof
of Theorem 3.1 in Section 5.

Proof of Theorem 4.4 (first part). For any R > 0, by Proposition 2 we know that
there exists a nontrivial solution (wR, w̃R) to problem (35). Let now (χR, χ̃R) be
the unique regular solution to the problem

Lsχ̃R = 0 in CR ,
χ̃R = 0 on ∂CR ∩ {y > 0} ,
χ̃R = χR on ΓR ,
∂χ̃R
∂y2s

= ρ on ΓR ,

where CR = BR × {y > 0}. By standard results (see e.g. [12]), we have:

χ̃R(x, y) =

∫
BR

GR((x, y), z) ρ(z)dz ∀(x, y) ∈ CR , (37)

where GR((x, y), z) (let (x, y) ∈ CR and z ∈ BR) is the Green function, namely the
solution of 

LsGR(·, z) = 0 in CR ,
GR(·, z) = 0 on ∂CR ∩ {y > 0} ,
∂GR(·, z)
∂y2s

= δz on ΓR ,

for each z ∈ BR. It is well known that the Green functions are positive and ordered
w.r.t. R, that is, if R1 ≤ R2 then

0 < GR1 ≤ GR2 in CR1 . (38)
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Furthermore, they are all bounded from above by the Green function G+ for the
half-space:

GR((x, y), z) ≤ G+((x, y), z) ∀(x, y) ∈ CR , ∀z ∈ BR , ∀R > 0 , (39)

where

G+((x, y), z) =
ks,d

|((x− z), y)|d−2s
∀(x, y) ∈ Rd+1

+ , ∀z ∈ Rd

(for the same constant ks,d appearing in (12)). The function G+ solvesLsG+(·, z) = 0 in Rd+1
+ ,

∂G+(·, z)
∂y2s

= δz on ∂Rd+1
+ ,

for each z ∈ Rd (see again [12] and also [16]). ¿From (12), (37) and (39) it clearly
follows that, for any R > 0 and any (x, y) ∈ CR,

χ̃R(x, y) ≤
∫
Rd
G+((x, y), z) ρ(z)dz

≤
∫
Rd
G+((x, 0), z) ρ(z)dz

= (I2s ∗ ρ)(x)

≤ ‖I2s ∗ ρ‖∞ = Ĉ

(40)

(for the last inequality, see Lemma 4.6). Now note that, for any test function ψ as
in Definition 4.7, we have:

µs

∫
ΩR

y1−2s〈∇χ̃R,∇ψ〉(x, y) dxdy = µs

∫
CR
y1−2s〈∇χ̃R,∇ψ〉(x, y) dxdy

=

∫
BR

ψ(x, 0) ρ(x)dx .

(41)

If we choose any C ≥ Ĉ
α

1−α , then the function (CχR, Cχ̃R) is a supersolution to
problem (35). In fact, thanks to (40) and (41), in this case there holds

µs

∫
ΩR

y1−2s
〈
∇
(
Cχ̃R

)
,∇ψ

〉
(x, y) dxdy =

∫
BR

Cψ(x, 0) ρ(x)dx

≥
∫
BR

[
CχR(x)

]α
ψ(x, 0) ρ(x)dx

for all nonnegative ψ as above. Hence, thanks to (37) and (38), we are in position
to apply the comparison principle provided by Proposition 3-(i) with the choices

(w
(1)
R , w̃

(1)
R ) = (wR, w̃R) and (w

(2)
R , w̃

(2)
R ) = (CχR, Cχ̃R), to get:

w̃R ≤ Cχ̃R a.e. in ΩR , (42)

and

wR ≤ CχR a.e. in BR . (43)

In particular, by (40), (42) and (43) we deduce that wR ∈ L∞(BR) and w̃R ∈
L∞(ΩR). We can now exploit Proposition 3-(ii) and infer that

w̃R > 0 in ΩR (44)

and

wR > 0 in BR . (45)
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Let 0 < R1 < R2. The strict positivity, for all R > 0, of (wR, w̃R) given by
(44) and (45) allows us to apply again Proposition 3-(i), this time with the choices

(w
(1)
R , w̃

(1)
R ) = (wR1

, w̃R1
) and (w

(2)
R , w̃

(2)
R ) = (wR2

, w̃R2
), to get:

w̃R1
≤ w̃R2

in ΩR , wR1
≤ wR2

in BR ∀R2 > R1 > 0 . (46)

We need to pass to the limit on (wR, w̃R) asR→∞. Given any fixed η ∈ C∞c (Rd+1
+ ∪

∂Rd+1
+ ), for every R > 0 large enough we can pick (after approximation) ψ = w̃Rη

2

as a test function in Definition 4.7. So, it is easily seen that

µs

∫
ΩR

y1−2s |∇w̃R(x, y)|2 η2 dxdy

≤2 ‖wR‖α+1
∞

∫
BR

η2(x, 0) ρ(x)dx+ 4µs ‖w̃R‖2∞
∫

ΩR

y1−2s |∇η(x, y)|2 dxdy .

(47)

¿From (40), (42), (43) and (47) we deduce that, for any Ω0 b Rd+1
+ ∪ ∂Rd+1

+ , there
holds ∫

Ω0

y1−2s |∇w̃R(x, y)|2 dxdy ≤ K (48)

for a suitable positive constant K independent of R > 0. By collecting (40), (42),
(43) and (46), we infer that there exist the following (nontrivial) pointwise limits:

lim
R→∞

w̃R = w̃ ∈ L∞(Rd+1
+ ) , lim

R→∞
wR = w ∈ L∞(Rd) . (49)

Due to (48), by standard compactness arguments we can pass to the limit in the
weak formulation (36) and infer that w is a local weak solution to (31) in the sense
of Definition 4.1 (with local extension w̃).

Now we have to prove minimality. Hereafter, we shall denote by w the solution
constructed above and by w any other nonidendically zero local weak solution to
(31) (according to Definition 4.1). In particular, for R large enough (w|BR , w̃|ΩR)
is a nontrivial solution to problem (35), in the sense of Definition 4.7, except that
w̃|ΩR is not necessarily zero on ΣR (that is, w̃ has finite energy in ΩR but does
not belong to Xs

0(ΩR)). However, the regularity results of [10] hold regardless of
boundary conditions on ΣR: namely, Proposition 3-(ii) is applicable in this case as
well, ensuring that w > 0 in BR. Because (wR, w̃R) is also a weak solution to (35)
and, trivially, w̃R|ΣR ≤ w̃|ΣR on ΣR, thanks to Proposition 3-(i) (with the choices

(w
(1)
R , w̃

(1)
R ) = (wR, w̃R) and (w

(2)
R , w̃

(2)
R ) = (w|BR , w̃|ΩR)) we deduce

wR ≤ w|BR in BR ,

whence w ≤ w in Γ by letting R → ∞, so that w is indeed minimal. The bound
(33) is then just a consequence of (40), (43) and (49).

¿From the above method of proof one can check that, under the more restrictive
condition (34), then w is also a weak solution to (10) in the sense of Definition 4.3.
In fact, thanks to Lemma 4.6, the inequalities (40), (43) and condition (34) ensure
that {‖wα+1

R ‖1,ρ} is uniformly bounded with respect to R. As a consequence, it is

easy to verify that estimate (48) holds with Ω0 = Rd+1
+ (up to setting w̃R = 0 in

ΩcR). By passing to the limit as R → ∞, this implies that w̃ ∈ Xs, w ∈ Ḣs(Rd),
w̃ = E(w) and w satisfies (32).

As already remarked, the fact that w is a very weak solution to (10) in the sense
of Definition 4.2 for all γ > 2s will be deduced at the end of the asymptotic analysis
of Section 5 (see the proof of Theorem 3.1).
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4.2. Uniqueness. In this section we prove our uniqueness result, stated in Theo-
rem 4.5, for solutions to (10). The strategy of proof strongly relies on the uniqueness
result provided by Theorem 2.3 for solutions to (1).

Proof of Theorem 4.5. Set m = 1/α and

Cm = (m− 1)−
1

m−1 .

For any k ∈ N let ζk ∈ C∞(Rd) be such that ζk = 1 in Bk, ζk = 0 in Bc2k and
0 ≤ ζk ≤ 1 in Rd. Take R > 2k and denote as (vR,k, ṽR,k) the unique strong
solution to the following evolution problem (see Appendix A – Part II):

Ls(ṽ
m
R,k) = 0 in ΩR × (0,∞) ,

ṽR,k = 0 on ΣR × (0,∞) ,
∂(ṽmR,k)

∂y2s
= ρ

∂vR,k
∂t

on ΓR × (0,∞) ,

vR,k = Cm ζkw
1
m on BR × {t = 0} .

(50)

Let (wR, w̃R) be defined as in the proof of Theorem 4.4. Since by hypothesis w ∈
L∞(Rd), thanks to (45) we can select a suitable τR > 0 so that

w
1
m

R+1

τ
1

m−1

R

≥ w 1
m in BR . (51)

We have:

ŨR =
Cmw̃

1
m

R+1

(t+ τR)
1

m−1

≤
Cmw̃

1
m

R+1

t
1

m−1

= Ũ0R in ΩR × (0,∞) . (52)

Set UR(·, t) = ŨR(·, 0, t) and U0R(·, t) = Ũ0R(·, 0, t), for each t > 0. By definition

of (UR, ŨR) and recalling (51), we get that (UR, ŨR) is a strong supersolution to
(50). Hence, by the comparison principle stated in Proposition 6 below and (52),
we deduce:

vR,k ≤ UR ≤ U0R a.e. in BR × (0,∞) . (53)

In addition to the above bounds we also have that, for any k2 > k1 and R > 2k1,
there holds

vR,k1 ≤ vR,k2 ≤
Cmw

1
m

(t+ 1)
1

m−1

= V a.e. in BR × (0,∞) . (54)

Such inequalities follow by noticing that (V, Ṽ ) is a strong supersolution to (50)
for all R > 0 and k ∈ N, while (vR,k2 , ṽR,k2) is a strong supersolution to (50) for
k = k1. One then applies again Proposition 6.

Since for each k ∈ N we have Cmζkw
1
m ∈ L1

ρ(Rd) ∩ L∞(Rd), by standard argu-
ments (e.g. similar to the ones exploited in the proof of [32, Theorem 3.1], see also
Appendix A – Part II) one sees that there exists the limit

v∞,k = lim
R→∞

vR,k a.e. in Rd

and it is a solution of the problem{
ρ (v∞,k)t + (−∆)s(vm∞,k) = 0 in Rd × (0,∞) ,

v∞,k = Cm ζkw
1
m on Rd × {0} ,
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both in the sense of Definition 2.1 and in the sense of Definition A.4 below. More-
over, as a consequence of (54), such limit satisfies the bounds

v∞,k1 ≤ v∞,k2 ≤ V a.e. in Rd × (0,∞) (55)

for all k2 > k1. Thanks to (55) we get the existence of the pointwise limit

v∞ = lim
k→∞

v∞,k ≤ V a.e. in Rd × (0,∞) ; (56)

by passing to the limit in the very weak formulation solved by v∞,k for all k ∈ N, we
infer that v∞ is a very weak solution, in the sense of Definition A.4, to the problem{

ρ (v∞)t + (−∆)s(vm∞) = 0 in Rd × (0,∞) ,

v∞ = Cmw
1
m on Rd × {0} .

(57)

Now notice that V is also a very weak solution to (57). Because, by hypothesis,
w ∈ L1

(1+|x|)−β (Rd), clearly V m ∈ L1
(1+|x|)−β (Rd×(0, T )). Hence, thanks to (56), we

deduce that also vm∞ belongs to L1
(1+|x|)−β (Rd× (0, T )). We are therefore in position

to apply Theorem 2.3 (after Remark 6) and obtain

v∞ = V a.e. in Rd × (0,∞) .

Passing to the limit in (53) (first as R → ∞, then as k → ∞) and using (49), we
infer that

v∞ ≤
Cmw

1
m

t
1

m−1

a.e. in Rd × (0,∞) ,

Hence,

w
1
m

w
1
m

≤ (t+ 1)
1

m−1

t
1

m−1

, (58)

and by letting t→∞ in (58) we deduce

w
1
m ≤ w 1

m a.e. in Rd .

Since w is nontrivial and w is minimal, it follows that w = w.

5. Asymptotic behaviour for rapidly decaying densities: Proofs. Before
proving Theorem 3.1, we need the following intermediate result, which gives a crucial
bound from above for the solution to problem (1) provided by Theorem 2.3.

Lemma 5.1. Under the same assumptions and with the same notations as in The-
orem 3.1, there holds

u(x, t) ≤ (m− 1)−
1

m−1 t−
1

m−1w
1
m (x) for a.e. (x, t) ∈ Rd × (0,∞) . (59)

We point out that an analogous result was proved in [6] in bounded domains for
ρ ≡ 1. Such result has then been applied in the study of the asymptotic behaviour
of solutions in [5].

Proof. Suppose at first that u0 ∈ L1
ρ(Rd)∩L∞(Rd). Let Cm, (wR, w̃R) and (UR, ŨR)

(for a suitable τR > 0 to be chosen later) be defined as in the proofs of Theorems 4.4
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and 4.5. For any R > 0, let (uR, ũR) be the unique strong solution to the following
evolution problem (see Appendix A – Part II):

Ls(ũ
m
R ) = 0 in ΩR × (0,∞) ,

ũR = 0 on ΣR × (0,∞) ,
∂ũmR
∂y2s

= ρ
∂uR
∂t

on ΓR × (0,∞) ,

uR = u0 on BR × {t = 0} .

(60)

By standard arguments (see again the proof of [32, Theorem 3.1] and Appendix A
– Part II), we have that

lim
R→∞

uR = u a.e. in Rd × (0,∞)

lim
R→∞

ũmR = ũm = E(um) a.e. in Rd+1
+ × (0,∞) ,

(61)

where u is the solution to (1) provided by Proposition 1. Note that, thanks to (45),
for any R > 0 there holds

min
BR

wR+1 > 0 . (62)

Hence, in view of (62) and recalling that we assumed u0 ∈ L1
ρ(Rd) ∩ L∞(Rd), we

can pick τR > 0 so that

Cmw
1
m

R+1

τ
1

m−1

R

≥ u0 a.e. in BR . (63)

Due to (63), (UR, ŨR) is a strong supersolution to problem (60). Therefore, by
comparison principles (see Proposition 6 below),

uR ≤ UR a.e. in BR × (0,∞) . (64)

Because trivially UR ≤ Cmt−
1

m−1w
1
m

R+1, from (64) we deduce the fundamental esti-
mate

uR ≤ Cm t−
1

m−1w
1
m

R+1 a.e. in BR × (0,∞) . (65)

By letting R→∞ in (65) and recalling (49) and (61), we finally get (59).
Consider now general data u0 ∈ L1

ρ(Rd). In this case, we have that

u = lim
n→∞

un a.e. in Rd × (0,∞) ,

where for every n ∈ N we denote as un the solution to problem (1) corresponding
to the initial datum u0n ∈ L1

ρ(Rd) ∩ L∞(Rd), and the sequence {u0n} is such that

0 ≤ u0n ≤ u0 in Rd for all n ∈ N and u0n → u0 in L1
ρ(Rd) as n → ∞ (see [32,

Section 6.2] and Appendix A – Parts I, II ). In view of the first part of the proof,
we know that for every n ∈ N there holds

un ≤ Cm t−
1

m−1w
1
m a.e. in Rd × (0,∞) . (66)

The assertion then follows by passing to the limit as n→∞ in (66).

Remark 5. As a consequence of the method of proof of Lemma 5.1 we also get the
validity of the estimate

E(um) ≤ Cmm t−
m
m−1 w̃ a.e. in Rd+1

+ × (0,∞) , (67)

where E(um) is the extension of um (see the beginning of Section 4) and w̃ is the
local extension of w, in agreement with Definition 4.1, provided along the first
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part of the proof of Theorem 4.4. In fact it is enough to notice that, by standard
comparison principles for sub- and supersolutions to the problem Ls = 0 in ΩR,
from (65) it follows that

ũmR ≤ Cmm t−
m
m−1 w̃R+1 a.e. in ΩR × (0,∞) , (68)

whence (67) upon letting R→∞ in (68).

Proof of Theorem 3.1 and end of proof of Theorem 4.4. Let us denote as v(x, τ) the
following rescaling of u(x, t):

u(x, t) = e−βτv(x, τ) , t = eτ , β =
1

m− 1
. (69)

It is immediate to check that v is a (weak, and in particular very weak) solution to
the equation

ρvτ = −(−∆)s(vm) + βρv in Rd × (0,∞) ,

in the sense that

−
∫ ∞

0

∫
Rd
v(x, τ)ϕτ (x, τ) ρ(x)dxdτ +

∫ ∞
0

∫
Rd
vm(x, τ)(−∆)s(ϕ)(x, τ) dxdτ

=β

∫ ∞
0

∫
Rd
v(x, τ)ϕ(x, τ) ρ(x)dxdτ +

∫
Rd
u(x, 1)ϕ(x, 0) ρ(x)dx

(70)
for all ϕ ∈ C∞c (Rd × [0,∞)). Moreover, E(vm) ∈ L2

loc((0,∞);Xs) and

−
∫ T

0

∫
Rd
v(x, τ)ψτ (x, 0, τ) ρ(x)dxdτ

+ µs

∫ T

0

∫
Rd+1

+

y1−2s 〈∇E(vm),∇ψ〉 (x, y, τ) dxdydτ

= β

∫ T

0

∫
Rd
v(x, τ)ψ(x, 0, τ) ρ(x)dxdτ

(71)

for all T > 0 and ψ ∈ C∞c ((Rd+1
+ ∪ ∂Rd+1

+ ) × (0, T )). Thanks to Lemma 5.1, we
have:

v(x, τ) ≤ Cmw
1
m (x) ≤ Cm ‖w‖

1
m
∞ for a.e. (x, τ) ∈ Rd × (0,∞) ; (72)

furthermore, recalling Remark 5,

E(vm)(x, y, τ) ≤ Cmm w̃(x, y) ≤ Cmm‖w̃‖∞ for a.e. (x, y, τ) ∈ Rd+1
+ × (0,∞) . (73)

Now let us show that

v(x, τ2) ≥ v(x, τ1) for a.e. x ∈ Rd

E(vm)(x, y, τ2) ≥ E(vm)(x, y, τ1) for a.e. (x, y) ∈ Rd+1
+

(74)

for all τ2 ≥ τ1 > 0. To this purpose, first of all note that, similarly to [42, p. 182]
(see also the original reference [2]), one can prove the fundamental Bénilan-Crandall
inequality

ρut ≥ −
ρu

(m− 1)t
a.e. in Rd × (0,∞)

which, recalling (69), implies that

vτ ≥ 0 a.e. in Rd × (0,∞) . (75)
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Thanks to (75) we obtain the first inequality in (74), and therefore also the second
one because the extension operator is order preserving. Hence, by (72), (73) and
(74) we infer that there exist finite the limits

h(x) = lim
k→∞

v(x, τk) for a.e. x ∈ Rd

H(x, y) = lim
k→∞

E(vm)(x, y, τk) for a.e. (x, y) ∈ Rd+1
+ ,

(76)

where {τk} is any time sequence tending to infinity. Moreover, since u0 6≡ 0, (74)
implies that h 6≡ 0 and H 6≡ 0, while (72) and (73) ensure that h ∈ L∞(Rd) and

H ∈ L∞(Rd+1
+ ).

Let us set

g = C−mm hm , g̃ = C−mm H . (77)

First we want to prove that g (with the corresponding local extension g̃) is a solution
to problem (31) (for α = 1/m) in the sense of Definition 4.1. To this end, for any
fixed 0 < τ1 < τ2 and 0 < ε < (τ2 − τ1)/2, let ζε(τ) be a smooth approximation of
the function χ[τ1,τ2](τ) such that

0 ≤ ζε(τ) ≤ 1 ∀τ ≥ 0 , ζε(τ) = 0 ∀τ 6∈ [τ1, τ2] , ζε(τ) = 1 ∀τ ∈ [τ1+ε, τ2−ε] .

Furthermore, we can and shall assume that

ζ ′ε(τ)→ δ(τ − τ1)− δ(τ − τ2)

as ε → 0. Consider now a cut-off function η as in the first part of the proof of
Theorem 4.4 and plug in the weak formulation (71) the test function ψ = ζεη

2E(vm).
Upon letting ε→ 0, we get:

1

m+ 1

∫
Rd
vm+1(x, τ2) η2(x, 0) ρ(x)dx

+µs

∫ τ2

τ1

∫
Rd+1

+

y1−2s
〈
∇E(vm),∇[η2 E(vm)]

〉
(x, y, τ) dxdydτ

=
1

m+ 1

∫
Rd
vm+1(x, τ1) η2(x, 0) ρ(x)dx

+ β

∫ τ2

τ1

∫
Rd
vm+1(x, τ) η2(x, 0) ρ(x)dxdτ .

Thanks to (72) and (73), by setting τ1 = τk, τ2 = τk + 1 and proceeding as in the
proof of (48), we obtain the estimate∫ τk+1

τk

∫
Ω0

y1−2s |∇E(vm)(x, y, τ)|2 dxdydτ ≤ C ′ (78)

for any Ω0 b Rd+1
+ ∪ ∂Rd+1

+ and a suitable constant C ′ > 0 independent of k.

Take any function φ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ). By plugging in (71) the test function
ψ(x, y, τ) = φ(x, y)ζε(τ) and letting ε→ 0, we infer that∫

Rd
[v(x, τk + 1)− v(x, τk)]φ(x, 0) ρ(x)dx

+ µs

∫ τk+1

τk

∫
Rd+1

+

y1−2s 〈∇E(vm)(x, y, τ),∇φ(x, y)〉dxdydτ

=β

∫ τk+1

τk

∫
Rd
v(x, τ)φ(x, 0) ρ(x)dxdτ .

(79)



22 GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

We point out that, still as a consequence of the time monotonicity ensured by (74),
in addition to (76) we also have

h(x) = lim
k→∞

v(x, τk + λ) for a.e. (x, λ) ∈ Rd × (0, 1) ,

h(x) = lim
k→∞

v(x, τk + 1) for a.e. x ∈ Rd , (80)

H(x, y) = lim
k→∞

E(vm)(x, y, τk + λ) for a.e. ((x, y), λ) ∈ Rd+1
+ × (0, 1) .

Gathering (72), (73), (76), (78) and (80), we can pass to the limit safely in (79) to
find that h and H satisfy

µs

∫
Rd+1

+

y1−2s〈∇H,∇φ〉(x, y) dxdy = β

∫
Rd
h(x)φ(x, 0) ρ(x)dx ,

with H(x, 0) = hm(x). That is, the function g (with g̃ as a local extension) defined
in (77) is a local weak solution to (31) (for α = 1/m) in the sense of Definition 4.1.
Furthermore, g is also a very weak solution to (10) in the sense of Definition 4.2. In
order to prove the latter assertion, we can proceed as above: for any φ ∈ C∞c (Rd)
plug in the weak formulation (70) the test function ϕ(x, τ) = ζε(τ)φ(x) and let
ε→ 0 to get∫

Rd
[v(x, τk + 1)− v(x, τk)]φ(x) ρ(x)dx

=

∫ τk+1

τk

∫
Rd

[−vm(x, τ)(−∆)s(φ)(x) + βv(x, τ)φ(x)ρ(x)] dxdτ .

Passing to the limit as k →∞ and using (72), (76), (80), we end up with

0 = −
∫
Rd
g(x)(−∆)s(φ)(x) dx+

∫
Rd
g

1
m (x)φ(x) ρ(x)dx (81)

and the estimate

g(x) ≤ w(x) for a.e. x ∈ Rd . (82)

Since g is a non-identically zero local weak solution to (31), the minimality of w and
(82) necessarily imply that g = w. In particular, thanks to (81), we can conclude
the proof of Theorem 4.4 by inferring that the minimal solution provided by it is
also a very weak solution to (10) (for α = 1/m) in the sense of Definition 4.2.

Finally, the convergence of {v(τk)} to Cmw
1/m in Lploc(Rd) for p ∈ [1,∞) is just

a consequence of (72) and (76). The above arguments being independent of the
particular sequence {τk}, the proof is complete.

6. Asymptotic behaviour for slowly decaying densities: Proofs. In order
to prove Theorem 3.2, we first need some preliminary results.

Lemma 6.1. Let d > 2s and assume that ρ satisfies (15) for some γ ≥ 0 and
γ0 ∈ [0, 2s). Let Uvρ be the Riesz potential of v ∈ L1

ρ(Rd) ∩ L∞(Rd), that is

Uvρ = I2s ∗ (ρv) .

Then Uvρ belongs to C(Rd) ∩ Lp(Rd) for all p satisfying

p ∈
(

d

d− 2s
,∞
]
.

Proof. We refer the reader to [23, Lemma 4.8].
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Let u be a weak solution to problem (3), according to Definition 2.1. For any
λ > 0, set

uλ(x, t) = λαu(λκx, λt) ∀(x, t) ∈ Rd × (0,∞) , (83)

where α, κ are defined in (26). Notice that (83) is the same scaling under which
uc∞M is invariant (see Section 3.2).

Proposition 4. Let the assumptions of Theorem 3.2 hold true, with in addition
u0 ∈ L1

ρ(Rd) ∩ L∞(Rd). Then, for any sequence λn → ∞, {uλn} converges to uc∞M
almost everywhere in Rd × (0,∞) along subsequences.

Proof. For notational simplicity, and with no loss of generality, we shall put c∞ = 1.
Here we shall not give a fully detailed proof, since the procedure follows closely the
one performed in the proof of [23, Theorem 3.2]. To begin with, note that uλ solves
the problem {

ρλ ut + (−∆)s(umλ ) = 0 in Rd × (0,∞) ,

uλ = u0λ on Rd × {0} ,
(84)

where

ρλ(x) = λκγρ(λκx) , u0λ(x) = λαu0(λκx) ∀x ∈ Rd .
It is easily seen that (recall the conservation of mass (19))

‖uλ(t)‖1,ρλ = ‖u0λ‖1,ρλ = M ∀t, λ > 0 . (85)

Claim 1. There exists a subsequence {uλm} ⊂ {uλn} that converges pointwise
a.e. in Rd × (0,∞) to some function u, which satisfies (16), (17) and (18) with
ρ(x) = |x|−γ .

First of all observe that, in view of (15),

c

1 + |x|γ
≤ ρλ(x) ≤ C

|x|γ
∀λ ≥ 1 . (86)

Combining the smoothing effect (20) with (85), we obtain:

‖uλ(t)‖∞ ≤ K t−αMβ ∀t, λ > 0 , (87)

where K > 0 is a constant depending only on m, γ, d, s and C. In particular,∫
Rd
um+1
λ (x, t) ρλ(x)dx ≤ Km t−αmMβm+1 ∀t, λ > 0 . (88)

By (22) and (88), we infer that∫ t2

t1

∫
Rd

∣∣(−∆)
s
2 (umλ )(x, t)

∣∣2 dxdt+
1

m+ 1

∫
Rd
um+1
λ (x, t2) ρλ(x)dx

≤ Km

m+ 1
t−αm1 Mβm+1

for all λ > 0 and all t2 > t1 > 0. On the other hand, thanks to (23),∫ t2

t1

∫
Rd
|(zλ)t(x, t)|2 ρλ(x)dxdt ≤ C ′ ∀t2 > t1 > 0 , ∀λ > 0 , (89)

where zλ := u
(m+1)/2
λ and C ′ is another positive constant depending on m, γ, d, s,

t1, t2, K, M but independent of λ. In view of (85)–(89), by standard compactness
arguments (see the proof of Theorem 2.5) the sequence {uλn} admits a subsequence
{uλm} converging a.e. in Rd × (0,∞) to some function u that complies with (16)
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and (17). Moreover, recalling the assumptions on ρ, we have that (86) holds true
and

lim
λ→∞

ρλ(x) = |x|−γ for a.e. x ∈ Rd . (90)

We are therefore allowed to pass to the limit in the weak formulation solved by uλm
to find that u also satisfies (18), and Claim 1 is proved. In order to deal with the
initial trace of u, it is convenient to introduce the Riesz potential Uλ of ρλuλ, that
is Uλ(x, t) := [I2s ∗ ρλuλ(t)](x).

Claim 2. For any λ > 0, the function Uλ satisfies∫
Rd
Uλ(x, t2)φ(x) dx−

∫
Rd
Uλ(x, t1)φ(x) dx = −

∫
Rd

(∫ t2

t1

umλ (x, t) dt

)
φ(x) dx

(91)
for all t2 > t1 > 0 and φ ∈ D(Rd).

In order to prove (91) rigorously, one proceeds exactly as in the proof of [23,
Theorem 3.2]. Note however that, formally, (−∆)s(Uλ)(t) = ρλuλ(t), so that (91),
still at a formal level, just follows by applying the operator (−∆)−s to both sides
of the differential equation in (84).

Claim 3. For any λ > 0, let U0λ := I2s ∗ ρλu0λ. Then,∣∣∣∣∫
Rd
Uλ(x, t2)φ(x) dx−

∫
Rd
U0λ(x)φ(x) dx

∣∣∣∣
≤
∥∥ρ−1

λ φ
∥∥
∞Km−1M1+β(m−1)

∫ t2

0

t−α(m−1)dt

(92)

for all t2 > 0 and φ ∈ D(Rd).

The validity of (92) is just a consequence of (85), (87), (91) and of the definition
of weak solution.

Claim 4. The potential U of |x|−γu, that is U(x, t) := [I2s∗|·|−γu(·, t)](x), satisfies∣∣∣∣∫
Rd
U(x, t2)φ(x) dx−

∫
Rd
MI2s(x)φ(x) dx

∣∣∣∣
≤c−1 ‖(1 + |x|γ)φ‖∞Km−1M1+β(m−1)

∫ t2

0

t−α(m−1)dt

(93)

for a.e. t2 > 0 and φ ∈ D(Rd).

Our goal is to let λ → ∞ in (92). In the r.h.s. we just exploit (86). Thanks to
Claim 1, (85), (86), (87) and (90) we infer that

lim
m→∞

ρλmuλm(t) = |x|−γu(t) in σ(M(Rd), C0(Rd))

for a.e. t > 0. This is enough in order to pass to the limit in the first integral in the
l.h.s. of (92). The same holds true for the second integral, provided we can prove
that {ρλu0λ} tends to Mδ e.g. in σ(M(Rd), Cb(Rd)) as λ→∞. This is indeed the
case: in fact, ‖ρλu0λ‖1 = M and for any φ ∈ Cc(Rd) one has

lim
λ→∞

∫
Rd
φ(x)ρλ(x)u0λ(x) dx

= lim
λ→∞

λα+κγ

∫
Rd
φ(x)ρ(λκx)u0(λκx) dx

= lim
λ→∞

∫
Rd
φ(y/λκ)u0(y) ρ(y)dy = Mφ(0) .



ASYMPTOTIC BEHAVIOUR FOR THE FRACTIONAL PME 25

Claim 5. There holds

lim
t→0
|x|−γu(t) = Mδ in σ(M(Rd), Cb(Rd)) . (94)

Passing to the limit in (85) as λ = λm →∞ we get

‖|x|−γu(t)‖1 ≤M for a.e. t > 0 . (95)

Estimate (95) implies, in particular, that |x|−γu(t) converges, up to subsequences,
to some positive finite Radon measure ν in σ(M(Rd), Cc(Rd)) as t→ 0. In view of
(93) we know that U(t) converges toMI2s = I2s∗Mδ e.g. in L1

loc(Rd) as t→ 0, which
entails ν = Mδ (see the end of proof of Theorem 2.5). We have therefore proved (94)
at least in σ(M(Rd), Cc(Rd)). In order to recover convergence in σ(M(Rd), Cb(Rd)),
it suffices to show that

lim
t→0
‖|x|−γu(t)‖1 = M ;

but this is a consequence of (95) and weak∗ lower semi-continuity.
¿From Claims 1 and 5 we conclude that u solves (8) in the sense of Definition

2.4, and therefore coincides with uM in view of the uniqueness result in Theorem
2.5.

We are now in position to prove Theorem 3.2.

Proof of Theorem 3.2. With no loss of generality we can and shall assume that
u0 ∈ L1

ρ(Rd) ∩ L∞(Rd) (recall the smoothing effect (20)).
Take any sequence λn → ∞. Our first aim is to prove that, along any of the

subsequences {λm} ⊂ {λn} given by Proposition 4, there holds

lim
m→∞

∫
BR

|uλm(x, t)− uc∞M (x, t)| |x|−γ dx = 0 ∀R > 0 , ∀t > 0 . (96)

Thanks to the smoothing estimates (20), (87) and to the fact that for almost every
t > 0 we know that {uλm(t)} converges pointwise almost everywhere to uc∞M (t), by
dominated convergence

lim
m→∞

∫
BR

|uλm(x, t)− uc∞M (x, t)| dx = 0 ∀R > 0 , for a.e. t > 0 . (97)

Moreover, estimate (119) for uλ reads (see Appendix A)

‖(uλ)t(t)‖1,ρλ ≤
2

(m− 1) t
M for a.e. t > 0 . (98)

Gathering (98) and (86), we can assert that for every R, τ > 0 there exists a positive
constant C(R, τ) (independent of λ) such that

‖(uλ)t(t)‖L1(BR)
≤ C(R, τ) for a.e. t ≥ τ . (99)

Of course (99) also holds for uc∞M . It is now possible to infer that (97) actually holds
for every t > 0:

lim
m→∞

∫
BR

|uλm(x, t)− uc∞M (x, t)| dx = 0 ∀R > 0 , ∀t > 0 . (100)
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In fact, for any given t0, ε > 0, there exists t > t0 such that (97) holds and |t−t0| ≤ ε.
Exploiting (99), we get:∫

BR

|uλm(x, t0)− uc∞M (x, t0)| dx

≤
∫
BR

|uλm(x, t0)− uλn(x, t)| dx

+

∫
BR

|uλm(x, t)− uc∞M (x, t)| dx+

∫
BR

|uc∞M (x, t)− uc∞M (x, t0)| dx

≤2C(R, t0) ε+

∫
BR

|uλm(x, t)− uc∞M (x, t)| dx .

(101)

Letting m→∞ in (101) yields

lim sup
m→∞

∫
BR

|uλm(x, t0)− uc∞M (x, t0)| dx ≤ 2C(R, t0)ε . (102)

Letting now ε → 0 in (102) shows that (97) holds for t = t0 as well. The validity
of (96) is then just a consequence of (100), the local integrability of |x|−γ and the
uniform bound over ‖uλm(t) − uc∞M (t)‖∞ ensured by the smoothing estimates (20)
and (87).

The consequence of Proposition 4 and what we proved above is that any sequence
λn →∞ satisfies (96) along subsequences. We can thus infer that

lim
λ→∞

∫
BR

|uλ(x, t)− uc∞M (x, t)| |x|−γ dx = 0 ∀R > 0 , ∀t > 0 . (103)

Upon fixing t = 1, relabelling λ as t and recalling the definition of uλ, note that
(103) reads

lim
t→∞

∫
BR

|tαu(tκx, t)− uc∞M (x, 1)| |x|−γ dx = 0 ∀R > 0 .

Performing the change of variable y = tκx and using the fact that α+κ(γ−d) = 0,
we obtain:

lim
t→∞

∫
BRtκ

∣∣u(y, t)− t−αuc∞M (t−κy, 1)
∣∣ |y|−γ dy

= lim
t→∞

∫
BRtκ

|u(y, t)− uc∞M (y, t)| |y|−γ dy = 0

(104)

for all R > 0, where we used (27) with λ = t−1.
¿From now on we shall denote as εR any function of the spatial variable (possibly

constant) which is independent of t and vanishes uniformly as R→∞. Going back
to the original variable x = t−κy we find that∫

Bc
Rtκ

uc∞M (y, t) |y|−γ dy =

∫
BcR

uc∞M (x, 1) |x|−γ dx = εR ∀R > 0 . (105)

Hence, the conservation of mass for uc∞M , (104) and (105) imply that

lim
t→∞

∫
BRtκ

u(y, t) |y|−γ dy = Mc−1
∞ − εR ∀R > 0 . (106)

Next we show that

lim
t→∞

∫
Rd
u(y, t) |y|−γ dy = Mc−1

∞ . (107)
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To this end first notice that, thanks to (15) and (28), there holds

|y|−γ =
ρ(y)

c∞ + εR(y)
∀y ∈ BcR ,

whence∫
Rd
u(y, t) |y|−γ dy =

∫
BR

u(y, t) |y|−γ dy +

∫
BcR

u(y, t)
ρ(y)

c∞ + εR(y)
dy . (108)

Thanks to (108) and the conservation of mass (19) for u, we get:∣∣∣∣∫
Rd
u(y, t) |y|−γ dy −Mc−1

∞

∣∣∣∣ =

∣∣∣∣∫
Rd
u(y, t) |y|−γ dy −

∫
Rd
u(y, t)

ρ(y)

c∞
dy

∣∣∣∣
≤
∫
BR

u(y, t) |y|−γ dy

+

∫
BR

u(y, t)
ρ(y)

c∞
dy +

‖εR‖∞
c∞(c∞ − ‖εR‖∞)

∫
BcR

u(y, t) ρ(y) dy .

(109)

Letting t→∞ in (109), using the smoothing effect (20) (as a decay estimate) and
the fact that both ρ(y) and |y|−γ are locally integrable, we obtain:

lim sup
t→∞

∣∣∣∣∫
Rd
u(y, t) |y|−γ dy −Mc−1

∞

∣∣∣∣ ≤ M ‖εR‖∞
c∞(c∞ − ‖εR‖∞)

. (110)

By letting R→∞ in (110) we get (107). Now notice that∫
Rd
|u(y, t)− uc∞M (y, t)| |y|−γ dy

≤
∫
BRtκ

|u(y, t)− uc∞M (y, t)| |y|−γ dy

+

∫
Bc
Rtκ

u(y, t) |y|−γ dy +

∫
Bc
Rtκ

uc∞M (y, t) |y|−γ dy .

(111)

Moreover, (106) and (107) imply that

lim
t→∞

∫
Bc
Rtκ

u(y, t) |y|−γ dy = εR . (112)

Collecting (104), (105), (111) and (112) we finally get

lim sup
t→∞

∫
Rd
|u(y, t)− uc∞M (y, t)| |y|−γ dy ≤ 2εR ,

whence (29) follows by letting R → ∞. The validity of (30) is just a consequence
of (29) and the change of variable y = tκx (one exploits again the scaling property
(27) of uc∞M ).

Appendix A. Well posedness of the parabolic problem for rapidly decay-
ing densities. Throughout this section, we shall use of the same notations as in
Section 4.
Part I. If ρ ∈ L∞loc(Rd) is positive and such that ρ−1 ∈ L∞loc(Rd), u0 is nonnegative
and such that u0 ∈ L1

ρ(Rd) ∩ L∞(Rd), then we can argue as in the proof of [14,
Theorem 7.3 (first construction)] in order to get the existence of a weak solution
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to problem (1), in the sense of Definition 2.1, which is bounded in the whole of
Rd × (0,∞). Furthermore, the following L1

ρ comparison principle holds true:∫
Rd

[u1(x, t)− u2(x, t)]+ ρ(x)dx ≤
∫
Rd

[u01 − u02]+ ρ(x)dx ∀t > 0 , (113)

where u1 and u2 are the solutions to problem (1), constructed as above, corre-
sponding to the initial data u01 ∈ L1

ρ(Rd) ∩ L∞(Rd) and u02 ∈ L1
ρ(Rd) ∩ L∞(Rd),

respectively.
As for uniqueness, a quite standard result for (suitable) weak solutions to problem

(1) is the following.

Proposition 5. Let ρ ∈ L∞loc(Rd) be positive and such that ρ−1 ∈ L∞loc(Rd). Let u
and v be two nonnegative weak solutions to (1), corresponding to the same nonneg-
ative u0 ∈ L1

ρ(Rd), in the sense that:

u, v ∈ Lm+1
ρ (Rd × (0,∞)) , (114)

um, vm ∈ L2
loc([0,∞); Ḣs(Rd)) (115)

and

−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt

+

∫ ∞
0

∫
Rd

(−∆)
s
2 (um)(x, t)(−∆)

s
2 (ϕ)(x, t) dxdt

= −
∫ ∞

0

∫
Rd
v(x, t)ϕt(x, t) ρ(x)dxdt

+

∫ ∞
0

∫
Rd

(−∆)
s
2 (vm)(x, t)(−∆)

s
2 (ϕ)(x, t) dxdt

=

∫
Rd
u0(x)ϕ(x, 0) ρ(x)dx

(116)

holds true for any ϕ ∈ C∞c (Rd × [0,∞)). Then, u = v a.e. in Rd × (0,∞).

Proof. In view of the hypotheses on u and v, using a standard approximation ar-
gument one can show that the so-called Olĕınik’s test function

ϕ(x, t) =

∫ T

t

[um(x, τ)− vm(x, τ)] dτ in Rd × (0, T ] , ϕ ≡ 0 in Rd ∈ (T,∞) ,

is in fact an admissible test function in the weak formulations (116) (for each T > 0).
The conclusion then follows by arguing exactly as in [14, Theorem 6.1] (see also the
subsequent remark).

Let us discuss some further properties of the solutions we constructed, which
can be proved by means of standard tools. To begin with note that, by proceeding
exactly as in [42, Lemma 8.5], one can show that ρ ut(t) is a Radon measure on Rd
satisfying the inequality

‖ρ ut(t)‖M(Rd) ≤
2

(m− 1) t
‖u0‖1,ρ for a.e. t > 0 , (117)

where here, as opposed to Subsection 2.2, with a slight abuse of notation we indicate
byM(Rd) the Banach space of Radon measures on Rd endowed with the usual norm
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of the total variation. Letting z = u
m+1

2 and following [14, Lemma 8.1] we also get
the validity of the estimate∫ t2

t1

∫
Rd
|zt(x, t)|2 ρ(x)dxdt ≤ C ′ ∀t2 > t1 > 0 (118)

for some positive constant C ′ depending on m, t1, t2 and on the initial datum. In
view of (118) and the general result provided by [3, Theorem 1.1] one infers that
ut ∈ L1

loc((0,∞);L1
ρ(Rd)). Moreover, the inequality

‖ut(t)‖1,ρ ≤
2

(m− 1) t
‖u0‖1,ρ for a.e. t > 0 (119)

holds true as a direct consequence of (117). In particular, our solution u is also a
strong solution to problem (1) in the sense of Definition 2.2. The fact that solutions
are strong permits to assert that they also solve the differential equation in (1), for
a.e. t > 0, in the L1 sense. This allows to get the following energy estimate (for the
details, see e.g. [23, Sections 4.1 and 4.2]):∫ t2

t1

∫
Rd

∣∣(−∆)
s
2 (um)(x, t)

∣∣2 dxdt+
1

m+ 1

∫
Rd
um+1(x, t2) ρ(x)dx

=
1

m+ 1

∫
Rd
um+1(x, t1) ρ(x)dx ,

(120)

for all t2 > t1 > 0. Furthermore, by suitably exploiting the celebrated Stroock-
Varopoulos inequality (see [14, Proposition 8.5] or [23, Section 4.2]), one can show
that for any p ∈ [1,∞] the Lpρ norm of u(t) does not increase in time.

Now suppose that, in addition to the above hypotheses, ρ ∈ L∞(Rd). Thanks to
the latter assumption, from the classical fractional Sobolev embedding (we refer the
reader e.g. to the survey paper [17] and references quoted therein) one immediately
deduces the validity of the following weighted, fractional Sobolev inequality:

‖v‖ 2d
d−2s ,ρ

≤ C̃S
∥∥(−∆)

s
2 (v)

∥∥
2
∀v ∈ Ḣs(Rd) , (121)

where C̃S = C̃S(‖ρ‖∞, s, d) is a suitable positive constant. By interpolation it
is straightforward to check that, as a consequence of (121), also the weighted,
fractional Nash-Gagliardo-Nirenberg inequality

‖v‖q,ρ ≤ C̃GN
∥∥(−∆)

s
2 (v)

∥∥ 1
a+1

2
‖v‖

a
a+1
p,ρ ∀v ∈ Lpρ(Rd) ∩ Ḣs(Rd) (122)

holds true for any a ≥ 0, p ≥ 1 and

q =
2d(a+ 1)

dap + d− 2s
,

where C̃GN = C̃GN (‖ρ‖∞, a, p, s, d) is another suitable positive constant. Taking
advantage of (122), by means of the same techniques as in [14, Section 8.2] or [23,
proof of Proposition 4.6], one can prove the smoothing estimate

‖u(t)‖∞ ≤ K t−αp ‖u0‖βpp,ρ ∀t > 0 , ∀p ≥ 1 , (123)

where

αp =
d

d(m− 1) + 2sp
, βp =

2spαp
d

and K = K(‖ρ‖∞,m, s, d) > 0.
Still under the additional assumption ρ ∈ L∞(Rd), it is possible to construct

solutions to (1) corresponding to any nonnegative data u0 ∈ L1
ρ(Rd). One proceeds
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picking a sequence of nonnegative data u0n ∈ L1
ρ(Rd)∩L∞(Rd) such that u0n → u0

in L1
ρ(Rd) and pass to the limit in (11) as n → ∞ by exploiting (113), (120) and

(123) for p = 1 (see also [32, Theorem 6.5 and Remark 6.11]). Such solutions are
still strong because the L1

ρ comparison principle (113) is preserved (which is in fact
one of the main tools to prove that solutions are strong – see again [14, Section 8.1]
and references quoted).

We have therefore proved the existence result contained in Proposition 1. As
concerns uniqueness, one can reason as follows. Proposition 5, in particular, ensures
that if u0 ∈ L1

ρ(Rd)∩L∞(Rd) then the solution to (1) that we constructed above is
unique in the class of weak solutions satisfying (114), (115) and (116). Moreover, any
weak solution u(x, t) to (1), in the sense of Definition 2.1, is such that u(x, t+ε) is a
weak solution to (1), corresponding to the initial datum u0(x, ε) ∈ L1

ρ(Rd)∩L∞(Rd),
satisfying (114), (115) and (116), for any ε > 0. Thanks to these properties, one
can then proceed exactly as in the proof of [32, Theorem 6.7].

Part II. We describe here another method for constructing weak solutions to prob-
lem (1). Take again nonnegative initial data u0 ∈ L1

ρ(Rd) ∩ L∞(Rd) and consider
the following problem (see also the discussion at the beginning of Section 4):

Ls (ũmR ) = 0 in ΩR × (0,∞) ,

ũR = 0 on ΣR × (0,∞) ,

ũR = uR on ΓR × (0,∞) ,
∂ (ũmR )

∂y2s
= ρ

∂uR
∂t

on ΓR × (0,∞) ,

uR = u0 on BR × {t = 0} .

(124)

Definition A.1. A weak solution to problem (124) is a pair of nonnegative func-
tions (uR, ũR) such that:

• uR ∈ C([0,∞);L1
ρ(BR)) ∩ L∞(BR × (τ,∞)) for all τ > 0;

• ũmR ∈ L2
loc((0,∞);Xs

0(ΩR));
• ũR|ΓR×(0,∞) = uR;
• for any ψ ∈ C∞c ((ΩR ∪ ΓR)× (0,∞)) there holds

−
∫ ∞

0

∫
BR

uR(x, t)ψt(x, 0, t) ρ(x)dxdt

+µs

∫ ∞
0

∫
ΩR

y1−2s〈∇(ũmR ),∇ψ〉(x, y, t) dxdydt = 0 ;

• limt→0 uR(t) = u0|BR in L1
ρ(BR).

Weak sub- and supersolutions to (124) are meant in agreement with Definition
A.1. In addition, we say that (uR, ũR) is a strong solution if, for every τ > 0,
(uR)t ∈ L∞((τ,∞);L1

ρ(BR)). By means of the same arguments used in the proof
of [14, Theorem 6.2], it is direct to deduce the next comparison principle.

Proposition 6. Let ρ ∈ L∞loc(Rd) be positive and such that ρ−1 ∈ L∞loc(Rd). Let

(u
(1)
R , ũ

(1)
R ) and (u

(2)
R , ũ

(2)
R ) be a strong subsolution and a strong supersolution, respec-

tively, to problem (124). Suppose that u
(1)
R ≤ u

(2)
R on BR × {t = 0} and ũ

(1)
R ≤ ũ

(2)
R

on ΣR × (0,∞). Then u
(1)
R ≤ u

(2)
R in BR × (0,∞) and ũ

(1)
R ≤ ũ

(2)
R in ΩR × (0,∞).

Making use of quite standard tools (see e.g. [14, 32]), one can prove that for any
R > 0 and u0 ∈ L1

ρ(Rd) ∩ L∞(Rd) there exists a unique strong solution (uR, ũR)
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to problem (124) (in the sense of Definition A.1). Moreover, the limit function
u = limR→∞ uR (note that the family {uR} is monotone in R thanks to Proposition
6) is nonnegative, bounded in Rd×(0,∞) and such that (114), (115) and (116) hold
true. Hence, in view of Proposition 5, such a u necessarily coincides with the solution
constructed in Part I: this in particular ensures that u ∈ C([0,∞), L1

ρ(Rd)). Again,

for general data u0 ∈ L1
ρ(Rd), we can select a sequence {u0n} ⊂ L1

ρ(Rd) ∩ L∞(Rd)
such that 0 ≤ u0n ≤ u0 and u0n → u0 in L1

ρ(Rd) and pass to the limit in (11) as
n → ∞ to get a solution to (1) in the sense of Definition 2.1 (which still coincides
with the one obtained in Part I).

Finally, we should note that in [14] and [32] the approximate problems are a
little different from (124) (namely, cylinders in the upper plane are used instead of
half-balls). However, this change does not affect the construction of the solution u.
Indeed, the present idea of using problem (124) is taken from [13, Section 2], where
the case s = 1/2 and ρ ≡ 1 is studied.

Part III. Let us now address the following problem, which is the analogue of (124)
in the whole upper plane:

Ls(ũ
m) = 0 in Rd+1

+ × (0,∞) ,

ũ = u on ∂Rd+1
+ × (0,∞) ,

∂ (ũm)

∂y2s
= ρ

∂u

∂t
on ∂Rd+1

+ × (0,∞) ,

u = u0 on Rd × {t = 0} .

(125)

Definition A.2. A nonnegative function u is a local weak solution to problem
(125) corresponding to the nonnegative initial datum u0 ∈ L1

ρ(Rd) if, for some
nonnegative function ũ such that

ũm ∈ L2
loc((0,∞);Xs

loc) ∩ L∞(Rd+1
+ × (τ,∞)) ∀τ > 0 ,

there hold:

• u ∈ C([0,∞);L1
ρ(Rd)) ∩ L∞(Rd × (τ,∞)) for all τ > 0;

• ũ|∂Rd+1
+ ×(0,∞) = u;

• for any ψ ∈ C∞c ((Rd+1
+ ∪ ∂Rd+1

+ )× (0,∞)),

−
∫ ∞

0

∫
Rd
u(x, t)ψt(x, 0, t) ρ(x)dxdt

+µs

∫ ∞
0

∫
Rd+1

+

y1−2s 〈∇(ũm),∇ψ〉 (x, y, t) dxdydt = 0
(126)

(in fact ũm is a local extension for um);
• for any ϕ ∈ C∞c (Rd × (0,∞)),

−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt

+

∫ ∞
0

∫
Rd
um(x, t)(−∆)s(ϕ)(x, t) dxdt = 0 ;

(127)

• limt→0 u(t) = u0 in L1
ρ(Rd).

Moreover, we say that u is a local strong solution if, in addition, for every τ > 0
one has ut ∈ L∞((τ,∞);L1

ρ,loc(Rd)).
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Notice that (127) is related to the so-called very weak formulation of problem
(1) (see also Definition A.4 below). For local weak solutions, in general um 6∈
L2

loc((0,∞); Ḣs(Rd)). Hence, equivalence between (126) and (127) cannot be estab-
lished.

The criterion of Proposition 5 here is not applicable in order to prove uniqueness.
However, it is possible to restore the latter by imposing extra integrability condi-
tions, as stated in Theorem 2.3. In order to prove it, we need some preliminaries.
Given a nonnegative f ∈ C∞c (Rd), let h = I2s ∗ f , so that

(−∆)s(h) = f in Rd .

It is not difficult to show that h ∈ C∞(Rd), h ≥ 0 and

h(x) + |∇h(x)| ≤ K |x|−d+2s ∀x ∈ Rd

for some K > 0 (use e.g. Lemma 4.6). Now take a cut-off function ξ ∈ C∞c (Rd)
such that 0 ≤ ξ ≤ 1 in Rd, ξ = 1 in B1/2 and ξ = 0 in Bc1. For any R > 0, let

ξR(x) = ξ
( x
R

)
∀x ∈ Rd . (128)

After straightforward computations, we obtain:

(−∆)s (hξR) (x) = h(x)(−∆)s(ξR)(x)+(−∆)s(h)(x) ξR(x)+B(h, ξR)(x) ∀x ∈ Rd ,

where B(φ1, φ2)(x) is the bilinear form defined as

B(φ1, φ2)(x) = 2Cd,s

∫
Rd

(φ1(x)− φ1(y))(φ2(x)− φ2(y))

|x− y|d+2s
dy ∀x ∈ Rd

and Cd,s is the positive constant appearing in (2). In view of [35, Lemma 3.1], we
have the following crucial result.

Lemma A.3. Let f ∈ C∞c (Rd), with f ≥ 0, h = I2s ∗ f and ξR be as in (128).
Then, for any T > 0 and v ∈ L1

(1+|x|)−d+2s(Rd × (0, T )), there holds

lim
R→∞

∫ T

0

∫
Rd
|v(x, t)h(x) (−∆)s(ξR)(x)| dxdt

+

∫ T

0

∫
Rd
|v(x, t)B(h, ξR)(x)| dxdt = 0 .

We are now in position to prove Theorem 2.3.

Proof of Theorem 2.3. Let u be the weak solution to problem (1) provided by
Proposition 1. Its minimality in the class of solutions described by Definition A.2,
namely local strong solutions, is a consequence of the construction outlined above
and the comparison principle given in Proposition 6: the approximate solutions
whose limit is u, let them be uR or un, are smaller than any local strong solution.
As concerns estimate (14), we only mention that it can be established by means of
the same arguments as in the proof of [32, Theorem 5.5], combined with the smooth-
ing effect (123) (see also [32, Remark 6.11]). We point out that the approximate
solutions uR used there are those obtained by solving (124) in cylinders CR rather
than in half-balls ΩR. Nevertheless, by comparison, the solution to the Dirichlet
problem in ΩR is below the one in CR, and this is clearly enough to get the upper
bound (14). If u0 ∈ L∞(Rd) no smoothing effect is needed, so that the validity of
(14) down to t0 = 0 is ensured by the fact that u ∈ L∞(Rd× (0,∞)) (see again [32,
Theorem 5.5]).
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In order to prove our uniqueness results, let us first assume that u0 ∈ L1
ρ(Rd) ∩

L∞(Rd). In this case, we have just shown that∫ T

0

um(x, τ) dτ ≤ K(I2s ∗ ρ)(x)

for all T > 0. In view of Lemma 4.6, it is straightforward to check that I2s ∗ ρ ∈
L1

(1+|x|)−d+2s(Rd) provided d > 4s and γ > 4s, whence um ∈ L1
(1+|x|)−d+2s(Rd ×

(0, T )) for all T > 0 and such values of the parameters. Moreover, since u ∈
L1
ρ(Rd × (0, T )) ∩ L∞(Rd × (0, T )) and so um ∈ L1

ρ(Rd × (0, T )), if γ ∈ (2s, d− 2s]

we have again that um ∈ L1
(1+|x|)−d+2s(Rd × (0, T )).

Now take another local strong solution u to (1) corresponding to the same u0 ∈
L1
ρ(Rd) ∩ L∞(Rd), which for the moment we assume to be bounded as well in the

whole of Rd × (0,∞). Because both u and u belong to

C([0,∞);L1
ρ(Rd)) ∩ L∞(Rd × (0,∞)) ,

by exploiting (127) it is direct to see that for any ϕ ∈ C∞c (Rd × [0,∞)) there holds

−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd
um(x, t)(−∆)s(ϕ)(x, t) dxdt

=−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd
um(x, t)(−∆)s(ϕ)(x, t) dxdt

=

∫
Rd
u0(x)ϕ(x, 0) ρ(x)dx .

(129)
Let η ∈ C∞([0,+∞)) be such that

η(0) = 1 , η ≡ 0 in [1,+∞) , 0 < η < 1 in (0, 1) , η′ ≤ 0 in [0,+∞) .

For any T > 0, set

ηT (t) := η(t/T ) ∀t ≥ 0 .

Take the test function

ϕ(x, t) = h(x)ξR(x)ηT (t) ∀(x, t) ∈ Rd × [0,+∞) ,

where h and ξR are defined above, and plug it in the weak formulation (129) solved
by u− u. We get:∫ T

0

∫
Rd
f(x)ξR(x)ηT (t) [um(x, t)− um(x, t)] dxdt

=

∫ T

0

∫
Rd
h(x)ξR(x)η′T (t) [u(x, t)− u(x, t)] ρ(x)dxdt

−
∫ T

0

∫
Rd

[h(x)(−∆)s(ξR)(x) + B(h, ξR)(x)] ηT (t) [um(x, t)− um(x, t)] dxdt .

(130)
Since u ≤ u and η′T ≤ 0, from (130) we find that

0 ≤
∫ T

0

∫
Rd
f(x)ξR(x)ηT (t) [um(x, t)− um(x, t)] dxdt

≤
∫ T

0

∫
Rd
|h(x)(−∆)s(ξR)(x) + B(h, ξR)(x)| [um(x, t) + um(x, t)] dxdt .

(131)
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Letting R→∞ in (131) and applying Lemma A.3 with v = um+um, we then infer
that u = u in the region supp f × (0, T ). Thanks to the arbitrariness of f and T ,
this means that u = u in the whole of Rd × (0,∞).

We finally need to get rid of the assumption u0 ∈ L∞(Rd). First notice that, for
any t0 > 0, u and u, restricted to Rd × (t0,∞), are bounded local strong solutions
with initial data u(t0) ∈ L1

ρ(Rd) ∩ L∞(Rd) and u(t0) ∈ L1
ρ(Rd) ∩ L∞(Rd), respec-

tively. Moreover, um, um ∈ L1
(1+|x|)−d+2s(Rd×(t0, T )) for all T > t0. Hence, in view

of the uniqueness result we proved above, they both coincide with the corresponding
minimal local strong solutions having the same initial data. But minimal solutions
are, in fact, the ones constructed above, for which, in particular, the L1

ρ comparison
principle (113) holds true. As a consequence, ‖u(t) − u(t)‖1,ρ ≤ ‖u(t0) − u(t0)‖1,ρ
for all t > t0 > 0. The conclusion follows by letting t0 → 0 and recalling that
u, u ∈ C([0,∞);L1

ρ(Rd)).

Let us consider the next definition of very weak solution to problem (1).

Definition A.4. A nonnegative function u ∈ L∞(Rd × (0,∞)) is a very weak
solution to problem (1) corresponding to the nonnegative initial datum u0 ∈ L∞(Rd)
if, for any ϕ ∈ C∞c (Rd × [0,∞)), (129) holds true.

Clearly, any bounded weak solution to (1) (according to Definition 2.1) is also a
very weak solution in the sense of Definition A.4.

Remark 6. As a byproduct of the method of proof of the uniqueness result in
Theorem 2.3, it turns out that if u1 and u2 are ordered very weak solutions to
problem to (1) (i.e. u1 ≤ u2 or u2 ≤ u1 in Rd × (0,∞)) such that um1 , u

m
2 ∈

L1
(1+|x|)−d+2s(Rd × (0, T )) for all T > 0, then u1 = u2.
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