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Abstract

The behaviour of Bitcoin owners is reflected in the structure and the number of bitcoin
transactions encoded in the Blockchain. Likewise, the behaviour of Bitcoin traders is reflected in
the formation of bullish and bearish trends in the crypto market. In light of these observations, we
wonder if human behaviour underlies some relationship between the Blockchain and the crypto
market. To address this question, we map the Blockchain to a spin-lattice problem, whose
configurations form ordered and disordered patterns, representing the behaviour of Bitcoin
owners. This novel approach allows us to obtain time series suitable to detect a causal relationship
between the dynamics of the Blockchain and market trends of the Bitcoin and to find that
disordered patterns in the Blockchain precede Bitcoin panic selling. Our results suggest that human
behaviour underlying Blockchain evolution and the crypto market brings out a fascinating
connection between disorder and panic in Bitcoin dynamics.

1. Introduction

Blockchain [1, 2] is a distributed ledger technology introduced by Nakamoto [1], rapidly expanding in many
sectors of our society, the economy and industry. Among the several applications, cryptocurrencies such as
Bitcoin represent the most successful ones. Bitcoin is a digital currency whose transactions get managed by a
fully decentralised system that hinges on a blockchain. The latter has a data structure composed of a chain of
blocks. Each block stores a set of transactions commonly verified by block creators termed miners in this
context. Within the block size limit, the miners can receive an incentive to add as many transactions as
possible. Nevertheless, the chain of blocks keeps growing no matter the amount of executed transactions
since, in principle, even blocks with no transactions can be mined and added to the chain. Before proceeding,
let us clarify the naming convention used in this work. Bitcoin (Uppercase) refers to the cryptocurrency (i.e.
BTC), and Blockchain (Uppercase) refers to the blockchain underpinning BTC. Then, we use blockchain
(lowercase) for referring to blockchains underpinning other cryptocurrencies. Cryptographic protocols
protect the Blockchain from double-spending [3] and other risks. Remarkably, while fiat money requires
third-party authorities, such as banks, to verify transactions, Blockchain does not need any additional
authority. Over the years, many blockchains based on new tokens, such as Bitcoin, have been implemented.
These tokens are also called cryptocurrencies, or cryptos, due to the underlying cryptographic mechanisms
supporting and securing transactions. Nowadays, a crypto ecosystem [4—7] which includes, for instance,
Ethereum (ETH), XRP (XRP), Cardano (ADA), Bitcoin Cash (BCH), Solana (SOL), Dogecoin (DOGE),
Bitcoin Satoshi Vision (BSV), and many other tokens, continuously grows. Many cryptos of such an
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ecosystem get exchanged in the crypto market, today accessible by several trading platforms. Like in financial
markets, the crypto market shows positive (i.e. bullish) and negative (i.e. bearish) trends resulting from the
behaviour of traders. In summary, the behaviour of Bitcoin users, i.e. wallet owners, traders, and so on, is
relevant to the evolution of the Blockchain and the crypto market. Yet, several questions remain unanswered
in this complex socio-technical system. Among these issues, we are interested in the following: Does human
behaviour underlie some relevant relationship between the Blockchain and the crypto market? The goal of
this investigation is to face this question. To this end, focusing on the most relevant and capitalised crypto,
i.e. Bitcoin, we map the Blockchain to a spin model, which allows assessing and measuring interactions with
the crypto market. Hypotheses on the nature and the existence of these interactions rely on the following
observation. Namely, since Blockchain records the structure of Bitcoin transactions, any anomaly, such as
high amounts of transactions or weird input/output transaction patterns, may underly some critical events
relating to the market value of Bitcoin. For instance, the sudden emptying of wallets performed by
transferring Bitcoin towards a limited number of wallets may reflect the need to increase control over them
or to get ready for other unusual actions. Before moving to the details of the proposed model and related
results, we remark that the Blockchain and cryptocurrencies constitute a modern and expanding research
area. Just to cite a few, previous investigations studied the Bitcoin price dynamics [8—11], the crypto network
of transactions [12—19], the predictive signals [20], using social data [21-24] and machine learning-based
approaches [25, 26], and the interplay between the network of Bitcoin transactions and the crypto

market [27].

2. From data to model

Datasets used in this investigation refer to a time interval from 2012 to 2022, including about 518643 blocks
and 730662636 transactions. Blockchain data can be accessed at [28] and crypto market data at [29].
Blockchain data describe blocks and contain Bitcoin transactions and other parameters such as the
Timestamp and the Blockheight. For instance, the Timestamp corresponds to the time a block gets ‘mined’
(i.e. generated), whereas the Blockheight identifies the position of a block along the chain. As
above-mentioned, we define a spin model by mapping blocks to vectors (see also [30]). In particular, we
consider the following parameters: the number of transactions, the number of inputs, and the number of
outputs per block. The number of transactions per block has a self-explanatory meaning, while the other
parameters, which refer to the structure of transactions [2], need further details. To this end, we describe a
simple transaction between Alice and Bob. Alice owns 3 BTC, collected from previous transactions, and
wants to send 2.5 BTC to Bob. She previously received: 1.0 BTC, 0.35 BTC, 0.45 BTC, 0.9 BTC, and 0.3 BTC,
each constituting an ‘unspent transaction output’ (UTXO) for a motivation later clarified. To send 2.5 BTC
to Bob, she has to compose a transaction using a combination of UTXOs, e.g. choosing 1.0 BTC, 0.9 BTC,
0.45 BTC, and 0.35 BTC, whose summation equals 2.7 BTC. The chosen UTXOs constitute the inputs of the
new transaction. Then, noting that the UTXO summation is greater than the amount of Bitcoin Alice wants
to send to Bob, the transaction has two outputs. The first output is addressed to Bob’s wallet (i.e. 2.5 BTC),
while the other is to Alice’s wallet (i.e. 0.2). These two outputs, in turn, become UTXOs that the respective
receivers (i.e. Bob and Alice) can use for future transactions. Detailed information about the microstructure
of the Blockchain, i.e. the content of its blocks, can be accessed by anyone, albeit the Bitcoin owners’ identity
remains preserved. Since every action in the crypto market (outside centralized exchanges, i.e. crypto trading
platforms) is recorded in the Blockchain, it might be possible to extract partial information about agents’
sentiments. In particular, anomalies in the transaction structure could reflect, as observed before, relevant
market instabilities.

Coming back to our model, using three parameters, each block gets represented by a 3-dimensional
normalised vector

B— (transactions, inputs, outputs) N
a B

—see plot (A) in figure 1, and the Blockchain gets mapped to a one-dimensional lattice. The resulting
structure resembles an n-vector model [31] with n = 3. Now, we highlight that the content of blocks cannot
change over time, as the Blockchain is an immutable ledger. That entails spin vectors are quenched variables
of the proposed model, namely never change state, albeit the chain grows as new spins add over time. For the
sake of clarity, new spin vectors added to the chain cannot change the spin chain configuration. In summary,
the Blockchain does not evolve as the well-known classical spin models. However, that does not prevent
defining a Hamiltonian-like function (to which we refer to just as Hamiltonian for simplicity), for instance,
by fixing an instant of time to consider a limited number of spin vectors. In addition, we may assume that the
spin configuration we observe at a given time represents an equilibrium configuration obtained at some
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Figure 1. Blockchain evolution. (A) Time evolution of components of the normalized daily block state. (B) Local Hamiltonian (H)
and the time derivative of its moving average (dH). The small fluctuations indicate blocks are usually very similar to each other. In
July 2015, a clear peak shows up. (C) Phase space of the Blockchain. Each point represents the state of one daily block, associated
with dH on a colour basis (above 98.5—below 1.5 percentile). Rapid increases in H (high values of dH) mostly correspond to days
with unbalanced inputs-outputs components. Fast relaxations of H are restricted to the post Flood Attack period.

temperature. In general, the Hamiltonian of a spin model minimises at low temperatures as ordered spin
patterns emerge. Similarly, it increases its value at high temperatures as disordered spin patterns show up.

As detailed below, the formation of ordered and disordered spin patterns offers valuable information to
analyse the evolution of the Blockchain. Then, the Hamiltonian of the obtained spin model (see also [32])
reads

H(B;T) =Y Jij(1— (B]B))) (2)
i

with J; ; interaction weight whose value is set to 0 if i > j, and B; spin vector corresponding to the ith block of
the chain (the index i represents the Blockheight and goes from 0 to T'). The scalar products in equation (2)
get close to 1 when consecutive vectors, i.e. blocks, are similar, otherwise get close to 0. Note that the scalar
product usually can range from —1 to +1. However, according to the range of values of the selected block
parameters, the scalar product can span the interval [0, +1]. Eventually, to include long-range interactions in
the Hamiltonian, whose amplitude decays with the distance J,_ ; ~ e~ z , equation (2) gets re-written as
follows:

T t k

H(B;T) :Zl—Z%Bj_kBt (3)

t=0 k=1

with Z; = Z,izl e r.In doing so, each block interacts with all previous ones. However, the exponential term
weights the interactions between blocks, decaying over long distances. Such a decay gets controlled by the
parameter 7. Using the single components which sum over in equation (3), we obtain a collection of spin
configurations that form ordered and disordered patterns. Lastly, we emphasise that the formation of
ordered and disordered patterns in the 3-vector model can get exploited for studying the relationships
between the Blockchain and trends of Bitcoin in the crypto market.

3. Results

The Hamiltonian defined in (3) can be decomposed in single contributions H(B; T) = ZtT: o H:(B) forming a
time series, to which we refer to as H. The latter, shown on the top of plot (B) in figure 1, gets computed by
setting a 7 small enough to include only significant long-range interactions limited to the previous 90 days.
In addition, after applying an exponential moving average to H, we compute its time derivative. The resulting
time series, i.e. dH, is shown at the bottom of plot (B) in figure 1. Interestingly, signals in figure 1 have a
prominent peak temporally located around July 2015. After looking for the possible sources of such a peak,
we found it corresponds to the Flood attack [33], a stress test performed to the Bitcoin network.

Rapid fluctuations in H seem to correspond to blocks with an unbalanced number of inputs relative to
the number of transactions and outputs (see plot (C) in figure 1). In particular, the area identified by a low
number of outputs and a high number of inputs could correspond to the emptying of wallets in the whole
network, suggesting an attitude of concern for the future value of the crypto or even market manipulations.

Both H and dH can get used for studying causal relationships with the crypto market and related
phenomena. To this end, we focus on the BTC/USD ratio (i.e. Bitcoin in American Dollars) and work on the

3
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Figure 2. Causality test between H and ATH. (A) The p-value for Granger causality (using F-test) is shown as a function of time
lags used in the fit. Increasing the knowledge of the past of H in forecasting ATH leads to higher significance in the test (always
below p = 0.05), whereas the opposite is found when trying to forecast H using ATH. (B) The results of the CCM test for the same
variables. The convergence to an asymptotic value of the reconstruction of the variables, increasing the library length, indicates
causal relation in both directions. The test was performed, for each L, using 400 random points or contiguous segments. The
straight lines are median values, and the error is computed with the 95th percentile.

time series composed of samples of the percentual drawdown from the All-Time-High of the BTC/USD
ratio. Notably, these samples equal 1 every time Bitcoin overcomes its previous historical maximum:

Price (t)
max; <, { Price (')}

(4)

ATH (t) =

Accordingly, the time series related to the BTC/USD ratio, which we refer to as ATH, and H have the same
range. To study the causal relationship between the Blockchain and the crypto market, we use only the H
time series, as H and dH are strongly related. However, we anticipate that the dH time series becomes
particularly relevant in the subsequent analysis, being spontaneously centred in zero and quantifying the
rapidity of divergence and relaxation compared with the quasi-steady state. Accordingly, we now aim to infer
a causal relationship between H and ATH, whose task constitutes a complex and old problem [34]. For this
purpose, we consider approaches relying on statistics and dynamical systems theory. For the first case,
i.e. approaches based on statistics, we perform the Granger causality test [35]. Given two variables, x and y,
the Granger causality test compares the forecasting quality of future values of y, of a standard ARMA model
(Null-hypothesis), with the same ARMA having additional information on previous values of the variable x.
More in detail, x is said to be Grange-cause of y whether the quality of the forecasting using information over
x is significantly higher (p-value <0.05) than the quality of the forecasting obtained without x. The plot (A)
in figure 2 shows the result of this test, whose variables are H and ATH. In that figure, we report the p-value
as a function of previous data points used in the fit of the ARMA model. Interestingly, the quality of the fit
improves as the forecasting of ATH exploits more information on H, i.e. more historical data, suggesting a
strong causal effect of H over ATH. The reverse is not the case since, according to the p-value, we have to
accept the Null-Hypothesis, i.e. ATH has no Granger causality over H. For the sake of completeness, we also
perform a cross convergent mapping (CCM) [36, 37] test, which relies on dynamical systems theory and is
deeply related to the Takens theorem and embedding theory [38]. In this case, we look for a deterministic
causality, which means that if two variables belong to the same dynamical system, one of them could be
reconstructed by using the other (and vice versa) via a delayed embedding. Here, we consider the quality of
the reconstruction of a variable y through a second variable x, which we refer to as y|M,. If such a quality
increases with the number of data samples (defined as library length) the variable x causally influences y.
Moreover, the faster the convergence to an asymptotic value of the CCM test, the stronger the dependence
between the considered variables. A critical point of the CCM test lies in the sample selection to compose the
library. So, following [39], we perform the CCM test composing the library of samples by a random selection
of contiguous segments and by a random selection of samples. Results are reported in the plot (B) of figure 2.
Here, we observe that both sampling strategies suggest a causal relationship between the two variables, i.e. H
and ATH, in both directions.

We deem that the difference between the results obtained by the CCM test and the Granger causality test,
i.e. a bi-directional causal relationship and a one-directional causal relationship, respectively, might be
motivated considering that the Granger causality test can only detect linear causal relationships.

4
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Figure 3. (A) The trend of the dH time series. Coloured lines indicate positive (red, above the 98.5 percentile) and negative
(green, below the 1.5 percentile) fluctuations. (B)) Percentual drawdown from the All Time High in time. Coloured dots identify
events of large fluctuations in dH. Red arrows highlight events followed by a decrease of at least 10% in the next 90 days. Rapid
increases in the H time series can predict collapses in the BTC price, while fast relaxation may indicate a local market recovery.
(C) Sentiment level after dH positive large fluctuation. In the 83% of cases, these events predate interval in which the BTC price
remains below the initial price most of the time (taken a 90 day time window). (D) Boolean of the exceeding the minimum price
change threshold (£10%, respectively OTH = =) after dH positive large fluctuation. 92% of these signals gets followed by a price
reduction of at least —10% (in a 90 day time window), while only the 31% gets followed by a 10% price growth highlighting a
clear downtrend.

In light of the above result, we study whether the H time series contains information to forecast Bitcoin
trends in the crypto market. Remarkably, rapid variations of H predate large fluctuations of ATH. Therefore,
the dH time series becomes particularly relevant for quantifying such phenomenon (figure 3). More in detail,
we observe that rapid increases in the H time series (i.e. large positive fluctuations of dH) can predict
collapses in the BTC value. In particular seems to well define the beginning of bear market periods, i.e. long
periods of supply predominance—see plot (B) in figure 3. The 83% of positive large fluctuations of dH are
followed by time interval in which the BTC price remains below the initial price most of the time (taken a
90 day time window) and the 92% precede a reduction of the BTC value of at least —10% (see plots (C) and
(D) in figure 3).

In addition, Fast relaxations may indicate a local market recovery. Up to now such events are solely
localized to the post Flood Attack months but mark the beginning of the subsequent bull market, i.e. a long
period of demand predominance.

These results reinforce the idea that the structure of the blocks reflects the sentiment of agents operating
in the market and that proximity to a course change can be extracted from them.

4, Conclusion

In summary, this work unveils relevant relationships between the dynamics of the Blockchain and the crypto
market, focusing on the Bitcoin price. The investigation, motivated by observing that human behaviour
affects both the dynamics of the Blockchain and those of the crypto market, exploits tools from statistical
physics (see also [40]). More specifically, we generated time series describing the evolution of the Blockchain
via a spin-lattice model. Such time series allowed us to obtain the following results. Firstly, we detected a
causal relationship between the Blockchain and the crypto market, and then we found Blockchain contains
information to forecast some trends in Bitcoin price. Remarkably, disordered patterns in the Blockchain,
identified via the spin model, predate the phenomenon of Bitcoin panic selling, suggesting a fascinating
connection between disorder and panic. To the best of our knowledge, the Forex market is not directly
affected by the transactions individuals perform with a fiat currency like the Euro, e.g. buying a coffee,
shopping, and making other daily payments. On the other hand, we found that the way simple transactions
get performed on the Blockchain can potentially drive trends in the crypto market. Therefore, albeit the
management of a fiat currency is drastically different from cryptocurrencies, we deem the above observation
on the Forex market can further clarify the relevance of our findings. In addition, we recall that the reported
analyses have a tight focus on single crypto, i.e. BTC. The latter is particularly representative in this domain,
being the first created crypto and still the most capitalised in the market. Despite that, further investigations
on a richer set of crypto assets are essential for corroborating our results. Before concluding, let us report a
few observations about some previous investigations. In [10], authors highlight the potential role of Bitcoin
transactions in driving the Bitcoin trading volume and price. That is confirmed by our results, as we show
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that the number of Bitcoin transactions plays a role in forecasting the Bitcoin market trends. In addition,
some ideas and outcomes of our investigation remind works [41, 42], which aimed at forecasting financial
market trends by looking at Wikipedia and Google Trends analytics, respectively. Likewise, here we aim to
foresee relevant phenomena in the crypto market, e.g. panic selling, by exploiting analytics data related to an
external system, i.e. the Blockchain. Finally, we deem the proposed model sheds light on relevant aspects of
Bitcoin dynamics. Therefore, future works based on this investigation could address the behaviour of other
cryptocurrencies and assess whether related results can support the design of trading strategies for the crypto
market.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://www.
blockchain.com/.
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