487 research outputs found

    Experimental Quantum Teleportation of a Two-Qubit Composite System

    Full text link
    Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations have been implemented with photonic or ionic qubits. Very recently long-distance teleportation and open-destination teleportation have also been realized. Until now, previous experiments have only been able to teleport single qubits. However, since teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation2-5, teleportation of a composite system containing two or more qubits has been seen as a long-standing goal in quantum information science. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols such as multi-stage realization of quantum-relay, fault-tolerant quantum computation, universal quantum error-correction and one-way quantum computation.Comment: 16pages, 4 figure

    The use of happiness research for public policy

    Get PDF
    Research on happiness tends to follow a "benevolent dictator" approach where politicians pursue people's happiness. This paper takes an antithetic approach based on the insights of public choice theory. First, we inquire how the results of happiness research may be used to improve the choice of institutions. Second, we show that the policy approach matters for the choice of research questions and the kind of knowledge happiness research aims to provide. Third, we emphasize that there is no shortcut to an optimal policy maximizing some happiness indicator or social welfare function since governments have an incentive to manipulate this indicator

    Spiral spin-liquid and the emergence of a vortex-like state in MnSc2_2S4_4

    Full text link
    Spirals and helices are common motifs of long-range order in magnetic solids, and they may also be organized into more complex emergent structures such as magnetic skyrmions and vortices. A new type of spiral state, the spiral spin-liquid, in which spins fluctuate collectively as spirals, has recently been predicted to exist. Here, using neutron scattering techniques, we experimentally prove the existence of a spiral spin-liquid in MnSc2_2S4_4 by directly observing the 'spiral surface' - a continuous surface of spiral propagation vectors in reciprocal space. We elucidate the multi-step ordering behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase on application of a magnetic field. Our results prove the effectiveness of the J1J_1-J2J_2 Hamiltonian on the diamond lattice as a model for the spiral spin-liquid state in MnSc2_2S4_4, and also demonstrate a new way to realize a magnetic vortex lattice.Comment: 10 pages, 11 figure

    Multiferroicity in an organic charge-transfer salt: Electric-dipole-driven magnetism

    Get PDF
    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, similar to conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for this exotic type of ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.Comment: 8 pages, 9 figures (including 4 pages and 6 figures in supplementary information). Version 2 with minor errors corrected (legend of Fig. 3c and definition of vectors e and Q

    Effect of Gait Imagery Tasks on Lower Limb Muscle Activity With Respect to Body Posture

    Get PDF
    The objective of this study was to evaluate the effect of gait imagery tasks on lowerlimb muscle activity with respect to body posture. The sitting and standing position and lower limb muscle activity were evaluated in 27 healthy female students (24.4±1.3 years, 167.2±5.2 cm, 60.10±6.4 kg). Surface electromyography was assessed during rest and in three different experimental conditions using mental imagery. These included a rhythmic gait, rhythmic gait simultaneously with observation of a model, and rhythmic gait after performing rhythmic gait. The normalized root mean square EMG values with respect to corresponding rest position were compared using non-parametric statistics. Standing gait imagery tasks had facilitatory effect on proximal lower limb muscle activity. However, electromyography activity of distal leg muscles decreased for all gait imagery tasks in the sitting position, when the proprioceptive feedback was less appropriate. For subsequent gait motor imagery tasks, the muscle activity decreased, probably as result of habituation. In conclusion, the effect of motor imagery on muscle activity appears to depend on relative strength of facilitatory and inhibitory inputs

    Alloreactivity: the Janus-face of hematopoietic stem cell transplantation

    Get PDF
    Differences in major and minor histocompatibility antigens between donor and recipient trigger powerful graft-versus-host reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The clinical effects of alloreactivity present a Janus-face: detrimental graft-versus-host disease increases non-relapse mortality, beneficial graft-versus-malignancy may cure the recipient. The ultimate consequences on long-term outcome remain a matter of debate. We hypothesized that increasing donor-recipient antigen matching would decrease the negative effects, while preserving antitumor alloreactivity. We analyzed retrospectively a predefined cohort of 32 838 such patients and compared it to 59 692 patients with autologous HSCT as reference group. We found a significant and systematic decrease in non-relapse mortality with decreasing phenotypic and genotypic antigen disparity, paralleled by a stepwise increase in overall and relapse-free survival (Spearman correlation coefficients of cumulative excess event rates at 5 years 0.964; P<0.00; respectively 0.976; P<0.00). We observed this systematic stepwise effect in all main disease and disease-stage categories. The results suggest that detrimental effects of alloreactivity are additive with each step of mismatching; the beneficial effects remain preserved. Hence, if there is a choice, the best match should be donor of choice. The data support an intensified search for predictive genomic and environmental factors of ‘no-graft-versus-host disease’.Leukemia advance online publication, 7 April 2017; doi:10.1038/leu.2017.79
    corecore