704 research outputs found

    Time-resolved photometry of the young dipper RX~J1604.3-2130A:Unveiling the structure and mass transport through the innermost disk

    Get PDF
    Context. RX J1604.3-2130A is a young, dipper-type, variable star in the Upper Scorpius association, suspected to have an inclined inner disk, with respect to its face-on outer disk. Aims. We aim to study the eclipses to constrain the inner disk properties. Methods. We used time-resolved photometry from the Rapid Eye Mount telescope and Kepler 2 data to study the multi-wavelength variability, and archival optical and infrared data to track accretion, rotation, and changes in disk structure. Results. The observations reveal details of the structure and matter transport through the inner disk. The eclipses show 5 d quasi-periodicity, with the phase drifting in time and some periods showing increased/decreased eclipse depth and frequency. Dips are consistent with extinction by slightly processed dust grains in an inclined, irregularly-shaped inner disk locked to the star through two relatively stable accretion structures. The grains are located near the dust sublimation radius (similar to 0.06 au) at the corotation radius, and can explain the shadows observed in the outer disk. The total mass (gas and dust) required to produce the eclipses and shadows is a few % of a Ceres mass. Such an amount of mass is accreted/replenished by accretion in days to weeks, which explains the variability from period to period. Spitzer and WISE infrared variability reveal variations in the dust content in the innermost disk on a timescale of a few years, which is consistent with small imbalances (compared to the stellar accretion rate) in the matter transport from the outer to the inner disk. A decrease in the accretion rate is observed at the times of less eclipsing variability and low mid-IR fluxes, confirming this picture. The v sin i = 16 km s(-1) confirms that the star cannot be aligned with the outer disk, but is likely close to equator-on and to be aligned with the inner disk. This anomalous orientation is a challenge for standard theories of protoplanetary disk formation.Science & Technology Facilities Council (STFC): ST/S000399/1. ESO fellowship. European Union (EU): 823 823. German Research Foundation (DFG): FOR 2634/1 TE 1024/1-1. French National Research Agency (ANR): ANR-16-CE31-0013. Alexander von Humboldt Foundation. European Research Council (ERC): 678 194. European Research Council (ERC): 742 095. National Aeronautics & Space Administration (NASA). National Science Foundation (NSF). National Aeronautics & Space Administration (NASA): NNG05GF22G. National Science Foundation (NSF): AST-0909182, AST-1 313 422

    Strengthening extended Gravity constraints with combined systems:\\ \texorpdfstring{f(R)f(R)}{} bounds from Cosmology and the Galactic Center

    Full text link
    MOdified Gravity (MoG)) is widely constrained in different astrophysical and astronomical systems. Since these different systems are based on different scales it is not trivial to get a combined constraint that is based on different phenomenology. Here, for the first time (to the best of our knowledge), we combine constraints for MoG from late time Cosmology and the orbital motion of the stars around the galactic center. MoG give different potentials that are tested directly in the galactic center. The cosmological data set includes the type Ia supernova and baryon acoustic oscillations. For the galactic star center data set we use the published orbital measurements of the S2 star. The constraints on the universal parameter β\beta from the combined system give: βHS=0.154±0.109\beta_{HS}=0.154 \pm 0.109 for the Hu-Sawicki model, while βSt=0.309±0.19\beta_{St}= 0.309 \pm 0.19 for the Starobinsky model. These results improve on the cosmological results we obtain. The results show that {{\it combined constraint}} from different systems yields a stronger constraint for different theories under consideration. Future measurements from the galactic center and from cosmology will give better constraints on MoG.Comment: 8 pages, 2 figure

    Refined masses and distance of the young binary Haro 1-14 C

    Full text link
    We aim to refine the dynamical masses of the individual component of the low-mass pre-main sequence binary Haro 1-14 C. We combine the data of the preliminary orbit presented previously with new interferometric observations obtained with the four 8m telescopes of the Very Large Telescope Interferometer. The derived masses are M_a=0.905\pm0.043\,\Msun and M_b=0.308\pm0.011\,\Msun for the primary and secondary components, respectively. This is about five times better than the uncertainties of the preliminary orbit. Moreover, the possibility of larger masses is now securely discarded. The new dynamical distance, d=96± 9 d=96\pm\,9\,pc, is smaller than the distance to the Ophiuchus core with a significance of 2.6 σ2.6\,\sigma. Fitting the spectral energy distribution yields apparent diameters of \phi_a=0.13\pm0.01\mas and \phi_b=0.10\pm0.01\mas (corresponding to \Ra=1.50\,\Rsun and \Rb=1.13\,\Rsun) and a visual extinction of Av≈1.75A_v\approx1.75. Although the revised orbit has a nearly edge-on geometry, the system is unlikely to be a long-period eclipsing binary. The secondary in Haro~1-14C is one of the few low-mass, pre-main sequence stars with an accurately determined dynamical mass and distance

    Carrier relaxation in GaAs v-groove quantum wires and the effects of localization

    Get PDF
    Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove quantum wires (QWRs) with a large subband separation (46 meV). Signatures of inhibited carrier relaxation mechanisms are seen in temperature-dependent photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we observe strong emission from the first excited state of the QWR below ~50 K. This is attributed to reduced inter-subband relaxation via phonon scattering between localized states. Theoretical calculations and experimental results indicate that the pinch-off regions, which provide additional two-dimensional confinement for the QWR structure, have a blocking effect on relaxation mechanisms for certain structures within the v-groove. Time-resolved PL measurements show that efficient carrier relaxation from excited QWR states into the ground state, occurs only at temperatures > 30 K. Values for the low temperature radiative lifetimes of the ground- and first excited-state excitons have been obtained (340 ps and 160 ps respectively), and their corresponding localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct corrupt figure

    Milli-arcsecond images of the Herbig Ae star HD 163296

    Full text link
    The very close environments of young stars are the hosts of fundamental physical processes, such as planet formation, star-disk interactions, mass accretion, and ejection. The complex morphological structure of these environments has been confirmed by the now quite rich data sets obtained for a few objects by near-infrared long-baseline interferometry. We gathered numerous interferometric measurements for the young star HD163296 with various interferometers (VLTI, IOTA, KeckI and CHARA), allowing for the first time an image independent of any a priori model to be reconstructed. Using the Multi-aperture image Reconstruction Algorithm (MiRA), we reconstruct images of HD 163296 in the H and K bands. We compare these images with reconstructed images obtained from simulated data using a physical model of the environment of HD 163296. We obtain model-independent HH and KK-band images of the surroundings of HD 163296. The images present several significant features that we can relate to an inclined asymmetric flared disk around HD 163296 with the strongest intensity at about 4-5 mas. Because of the incomplete spatial frequency coverage, we cannot state whether each of them individually is peculiar in any way. For the first time, milli-arcsecond images of the environment of a young star are produced. These images confirm that the morphology of the close environment of young stars is more complex than the simple models used in the literature so far.Comment: 11 pages, 10 figures, accepted A&A pape

    The complex morphology of the young disk MWC 758: Spirals and dust clumps around a large cavity

    Full text link
    We present Atacama Large Millimeter Array (ALMA) observations at an angular resolution of 0.1-0.2" of the disk surrounding the young Herbig Ae star MWC 758. The data consist of images of the dust continuum emission recorded at 0.88 millimeter, as well as images of the 13CO and C18O J = 3-2 emission lines. The dust continuum emission is characterized by a large cavity of roughly 40 au in radius which might contain a mildly inner warped disk. The outer disk features two bright emission clumps at radii of about 47 and 82 au that present azimuthal extensions and form a double-ring structure. The comparison with radiative transfer models indicates that these two maxima of emission correspond to local increases in the dust surface density of about a factor 2.5 and 6.5 for the south and north clumps, respectively. The optically thick 13CO peak emission, which traces the temperature, and the dust continuum emission, which probes the disk midplane, additionally reveal two spirals previously detected in near-IR at the disk surface. The spirals seen in the dust continuum emission present, however, a slight shift of a few au towards larger radii and one of the spirals crosses the south dust clump. Finally, we present different scenarios in order to explain the complex structure of the disk.Comment: 15 pages, 11 figures. The paper has been published in ApJ. References added and typos correcte

    Jets and Outflows From Star to Cloud: Observations Confront Theory

    Full text link
    In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important role in mediating the physics of assembling stars both individually and globally? We address this question by reviewing the current state of observations and their key points of contact with theory. Our review of jet/outflow phenomena is organized into three length-scale domains: Source and Disk Scales (0.1−1020.1-10^2 au) where the connection with protostellar and disk evolution theories is paramount; Envelope Scales (102−10510^2-10^5 au) where the chemistry and propagation shed further light on the jet launching process, its variability and its impact on the infalling envelope; Parent Cloud Scales (105−10610^5-10^6 au) where global momentum injection into cluster/cloud environments become relevant. Issues of feedback are of particular importance on the smallest scales where planet formation regions in a disk may be impacted by the presence of disk winds, irradiation by jet shocks or shielding by the winds. Feedback on envelope scales may determine the final stellar mass (core-to-star efficiency) and envelope dissipation. Feedback also plays an important role on the larger scales with outflows contributing to turbulent support within clusters including alteration of cluster star formation efficiencies (feedback on larger scales currently appears unlikely). A particularly novel dimension of our review is that we consider results on jet dynamics from the emerging field of High Energy Density Laboratory Astrophysics (HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully magnetized, hypersonic, radiative outflows.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Planet formation in the PDS 70 system: Constraining the atmospheric chemistry of PDS 70b and c

    Get PDF
    Understanding the chemical link between protoplanetary disks and planetary atmospheres is complicated by the fact that the popular targets in the study of disks and planets are widely separated both in space and time. The 5 Myr PDS 70 systems offers a unique opportunity to directly compare the chemistry of a giant planet's atmosphere to the chemistry of its natal disk. To that end, we derive our current best physical and chemical model for the PDS 70 disk through forward modelling of the 12^{12}CO, C18^{18}O, and C2_2H emission radial profiles with the thermochemical code DALI and find a volatile C/O ratio above unity in the outer disk. Using what we know of the PDS 70 disk today, we analytically estimate the properties of the disk as it was 4 Myr in the past when we assume that the giant planets started their formation, and compute a chemical model of the disk at that time. We compute the formation of PDS 70b and PDS 70c using the standard core accretion paradigm and account for the accretion of volatile and refractory sources of carbon and oxygen to estimate the resulting atmospheric carbon-to-oxygen number ratio (C/O) for these planets. Our inferred C/O ratio of the gas in the PDS 70 disk indicates that it is marginally carbon rich relative to the stellar C/O = 0.44 which we derive from an empirical relation between stellar metallicity and C/O. Under the assumption that the disk has been carbon rich for most of its lifetime, we find that the planets acquire a super-stellar C/O in their atmospheres. If the carbon-rich disk is a relatively recent phenomenon (i.e. developed after the formation of the planets at ∼1\sim 1 Myr) then the planets should have close to the stellar C/O in their atmospheres. This work lays the groundwork to better understand the disk in the PDS 70 system as well as the planet formation scenario that produce its planets.Comment: 18 pages, 14 figures, 5 tables, accepted for publication in A&

    The inner radius of T Tauri disks estimated from near-infrared interferometry: the importance of scattered light

    Full text link
    For young Herbig Ae/Be stars, near-infrared interferometric measurements have revealed a correlation between the luminosity of the central object and the position of the disk inner rim. This correlation breaks down for the cooler T Tauri stars, a fact often interpreted in terms of disks with larger inner radii. In most cases, the conversion between the observed interferometric visibility and the calculated disk inner radius was done with a crude disk emission model. Here, we examine how the use of models that neglect scattered light can lead to an overestimation of the disk sizes. To do so, synthetic disk images (and visibilities) are calculated with a full treatment of the radiative transfer. The relative contributions of thermal emission and scattered light are compared. We find that the latter can not be neglected for cool stars. For further comparison, the model visibilities are also converted into inner disk radii using the same simple disk models as found in the literature. We find that reliable inner radii can only be estimated for Herbig Ae/Be stars with these models. However, they lead to a systematic overestimation of the disk size, by a factor of 2 to 3, for T Tauri stars. We suggest that including scattered light in the models is a simple (and sufficient) explanation of the current interferometric measurements of T Tauri stars.Comment: 4 pages, 4 figures, accepted for publication in ApJ
    • …
    corecore