210 research outputs found
Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia
The genus Quambalaria consists of plant-pathogenic fungi causing
disease on leaves and shoots of species of Eucalyptus and its close
relative, Corymbia. The phylogenetic relationship of
Quambalaria spp., previously classified in genera such as
Sporothrix and Ramularia, has never been addressed. It has,
however, been suggested that they belong to the basidiomycete orders
Exobasidiales or Ustilaginales. The aim of this study was
thus to consider the ordinal relationships of Q. eucalypti and Q.
pitereka using ribosomal LSU sequences. Sequence data from the ITS nrDNA
were used to determine the phylogenetic relationship of the two
Quambalaria species together with Fugomyces (=
Cerinosterus) cyanescens. In addition to sequence data, the
ultrastructure of the septal pores of the species in question was compared.
From the LSU sequence data it was concluded that Quambalaria spp. and
F. cyanescens form a monophyletic clade in the
Microstromatales, an order of the Ustilaginomycetes.
Sequences from the ITS region confirmed that Q. pitereka and Q.
eucalypti are distinct species. The ex-type isolate of F.
cyanescens, together with another isolate from Eucalyptus in
Australia, constitute a third species of Quambalaria, Q.
cyanescens (de Hoog & G.A. de Vries) Z.W. de Beer, Begerow & R.
Bauer comb. nov. Transmission electron-microscopic studies of the septal pores
confirm that all three Quambalaria spp. have dolipores with swollen
lips, which differ from other members of the Microstromatales (i.e.
the Microstromataceae and Volvocisporiaceae) that have
simple pores with more or less rounded pore lips. Based on their unique
ultrastructural features and the monophyly of the three Quambalaria
spp. in the Microstromatales, a new family, Quambalariaceae
Z.W. de Beer, Begerow & R. Bauer fam. nov., is described
An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences
Mycologia, Vol. 98, nº6In this study we provide a phylogenetically
based introduction to the classes and orders of Pucciniomycotina (5Urediniomycetes), one of three subphyla of Basidiomycota. More than 8000 species of Pucciniomycotina have been described including putative saprotrophs and parasites of plants, animals and fungi. The overwhelming majority of these(,90%) belong to a single order of obligate plant
pathogens, the Pucciniales (5Uredinales), or rust fungi. We have assembled a dataset of previously published and newly generated sequence data from two nuclear rDNA genes (large subunit and small subunit) including exemplars from all known major groups in order to test hypotheses about evolutionary
relationships among the Pucciniomycotina. The
utility of combining nuc-lsu sequences spanning the entire D1-D3 region with complete nuc-ssu sequences
for resolution and support of nodes is discussed. Our study confirms Pucciniomycotina as a monophyletic
group of Basidiomycota. In total our results support eight major clades ranked as classes (Agaricostilbomycetes, Atractiellomycetes, Classiculomycetes,Cryptomycocolacomycetes,Cystobasidiomycetes, Microbotryomycetes,Mixiomycetes and Pucciniomycetes) and 18 orders
AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa
Background
Current tools for Co-phylogenetic analyses are not able to cope with the continuous accumulation of phylogenetic data. The sophisticated statistical test for host-parasite co-phylogenetic analyses implemented in Parafit does not allow it to handle large datasets in reasonable times. The Parafit and DistPCoA programs are the by far most compute-intensive components of the Parafit analysis pipeline. We present AxParafit and AxPcoords (Ax stands for Accelerated) which are highly optimized versions of Parafit and DistPCoA respectively.
Results
Both programs have been entirely re-written in C. Via optimization of the algorithm and the C code as well as integration of highly tuned BLAS and LAPACK methods AxParafit runs 5–61 times faster than Parafit with a lower memory footprint (up to 35% reduction) while the performance benefit increases with growing dataset size. The MPI-based parallel implementation of AxParafit shows good scalability on up to 128 processors, even on medium-sized datasets. The parallel analysis with AxParafit on 128 CPUs for a medium-sized dataset with an 512 by 512 association matrix is more than 1,200/128 times faster per processor than the sequential Parafit run. AxPcoords is 8–26 times faster than DistPCoA and numerically stable on large datasets. We outline the substantial benefits of using parallel AxParafit by example of a large-scale empirical study on smut fungi and their host plants. To the best of our knowledge, this study represents the largest co-phylogenetic analysis to date.
Conclusion
The highly efficient AxPcoords and AxParafit programs allow for large-scale co-phylogenetic analyses on several thousands of taxa for the first time. In addition, AxParafit and AxPcoords have been integrated into the easy-to-use CopyCat tool
Species Accumulation Curves and Incidence-Based Species Richness Estimators to Appraise the Diversity of Cultivable Yeasts from Beech Forest Soils
Background: Yeast-like fungi inhabit soils throughout all climatic zones in a great abundance. While recent estimations predicted a plethora of prokaryotic taxa in one gram of soil, similar data are lacking for fungi, especially yeasts. Methodology/Principal Findings: We assessed the diversity of soil yeasts in different forests of central Germany using cultivation-based techniques with subsequent identification based on rDNA sequence data. Based on experiments using various pre-cultivation sample treatment and different cultivation media we obtained the highest number of yeasts by analysing mixed soil samples with a single nutrient-rich medium. Additionally, several species richness estimators were applied to incidence-based data of 165 samples. All of them predicted a similar range of yeast diversity, namely 14 to 16 species. Randomized species richness curves reached saturation in all applied estimators, thus indicating that the majority of species is detected after approximately 30 to 50 samples analysed. Conclusions/Significance: In this study we demonstrate that robust species identification as well as mathematical approaches are essential to reliably estimate the sampling effort needed to describe soil yeast communities. This approach has great potential for optimisation of cultivation techniques and allows high throughput analysis in the future
Biogeography in the air: fungal diversity over land and oceans
Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the 'blue ocean' and 'green ocean' regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.Max Planck Society (MPG)Max Planck Society (MPG)LEC Geocycles in MainzLEC Geocycles in Mainzstate Rheinland-Pfalz [596]state RheinlandPfalzGerman Research Foundation [DE1161/2-1, PO1013/5-1, FOR 1525 INUIT]German Research Foundatio
Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes
<p>Abstract</p> <p>Background</p> <p>The red yeasts are an early diverged group of basidiomycetes comprising sexual and asexual species. Sexuality is based on two compatible mating types and sexual identity is determined by <it>MAT </it>loci that encode homeodomain transcription factors, peptide pheromones and their receptors. The objective of the present study was to investigate the presence and integrity of <it>MAT </it>genes throughout the phylogenetic diversity of red yeasts belonging to the order Sporidiobolales.</p> <p>Results</p> <p>We surveyed 18 sexual heterothallic and self-fertile species and 16 asexual species. Functional pheromone receptor homologues (<it>STE3.A1 </it>and <it>STE3.A2</it>) were found in multiple isolates of most of the sexual and asexual species. For each of the two mating types, sequence comparisons with whole-genome data indicated that synteny tended to be conserved along the pheromone receptor region. For the homeodomain transcription factor, likelihood methods suggested that diversifying selection acting on the self/non-self recognition region promotes diversity in sexual species, while rapid evolution seems to be due to relaxed selection in asexual strains.</p> <p>Conclusions</p> <p>The majority of both sexual and asexual species of red yeasts have functional pheromone receptors and homeodomain homologues. This and the frequent existence of asexual strains within sexual species, makes the separation between sexual and asexual species imprecise. Events of loss of sexuality seem to be recent and frequent, but not uniformly distributed within the Sporidiobolales. Loss of sex could promote speciation by fostering the emergence of asexual lineages from an ancestral sexual stock, but does not seem to contribute to the generation of exclusively asexual lineages that persist for a long time.</p
The course of the acute vertebral body fragility fracture: its effect on pain, disability and quality of life during 12 months
The vertebral body fracture is the most frequent bone fragility fracture. In spite of this there is considerable uncertainty about the frequency, extent and severity of the acute pain and even more about the duration of pain, the magnitude of disability and how much daily life is disturbed in the post-fracture period. The aim of the present study was to follow the course of pain, disability, ADL and QoL in patients during the year after an acute low energy vertebral body fracture. The study design was a longitudinal cohort study with prospective data collection. All the patients over 40 years admitted to the emergency unit because of back pain with a radiologically acute vertebral body fracture were eligible. A total of 107 patients were followed for a year. The pain, disability (von Korff pain and disability scores), ADL (Hannover ADL score), and QoL (EQ-5D) were measured after 3 weeks, 3, 6 and 12 months. Two-thirds of the patients were women, and were similar in average age, as the men around 75 years. A total of 65.4% of the fractures were due to a level fall or a minor trauma, whereas 34.6% had no recollection of trauma or a specific event as the cause of the fracture. A total of 76.6% of the fractured patients were immediately mobilized and allowed to return home while the remaining were hospitalized. The average pain intensity score after 3 weeks was 70.9 (SD 19.3), the disability score 68.9 (SD 23.6), the ADL score 37.7 (SD 22.1) and EQ-5D score of 0.37 (SD 0.37). The largest improvements, 10–15%, occurred between the initial visit and the 3 months follow-up and were quite similar for all the measures. From 3 months, all the outcome measures leveled out or tended to deteriorate resulting in a mean pain intensity score of 60.5, disability score of 53.9, ADL score of 47.6, and EQ-5D score 0.52 after 12 months. After a whole year the fractured patients’ condition was similar to the preoperative condition of patients with a herniated lumbar disc, central lumbar spinal stenosis or in patients 100% work disabled due to back or neck problems. Instead of the generally believed good prognosis for the greater majority of those fractured, the acute vertebral body fracture was the beginning of a long-lasting severe deterioration of their health
Factors That Affect Large Subunit Ribosomal DNA Amplicon Sequencing Studies of Fungal Communities: Classification Method, Primer Choice, and Error
Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys
One fungus, which genes?: development and assessment of universal primers for potential secondary fungal DNA barcodes
The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial beta-tubulin II (TUB2); iv) gamma-actin (ACT); v) translation elongation factor 1-alpha (TEF1 alpha); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1 alpha. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1 alpha, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail
- …