1,168 research outputs found

    Modeling Nonaxisymmetric Bow Shocks: Solution Method and Exact Analytic Solutions

    Get PDF
    A new solution method is presented for steady-state, momentum-conserving, non-axisymmetric bow shocks and colliding winds in the thin-shell limit. This is a generalization of previous formulations to include a density gradient in the pre-shock ambient medium, as well as anisotropy in the pre-shock wind. For cases where the wind is unaccelerated, the formalism yields exact, analytic solutions. Solutions are presented for two bow shock cases: (1) that due to a star moving supersonically with respect to an ambient medium with a density gradient perpendicular to the stellar velocity, and (2) that due to a star with a misaligned, axisymmetric wind moving in a uniform medium. It is also shown under quite general circumstances that the total rate of energy thermalization in the bow shock is independent of the details of the wind asymmetry, including the orientation of the non-axisymmetric driving wind, provided the wind is non-accelerating and point-symmetric. A typical feature of the solutions is that the region near the standoff point is tilted, so that the star does not lie along the bisector of a parabolic fit to the standoff region. The principal use of this work is to infer the origin of bow shock asymmetries, whether due to the wind or ambient medium, or both.Comment: 26 pages and 6 figures accepted to ap

    Recovery of a medieval Brucella melitensis genome using shotgun metagenomics

    Get PDF
    Shotgun metagenomics provides a powerful assumption-free approach to the recovery of pathogen genomes from contemporary and historical material. We sequenced the metagenome of a calcified nodule from the skeleton of a 14th-century middle-aged male excavated from the medieval Sardinian settlement of Geridu. We obtained 6.5-fold coverage of a Brucella melitensis genome. Sequence reads from this genome showed signatures typical of ancient or aged DNA. Despite the relatively low coverage, we were able to use information from single-nucleotide polymorphisms to place the medieval pathogen genome within a clade of B. melitensis strains that included the well-studied Ether strain and two other recent Italian isolates. We confirmed this placement using information from deletions and IS711 insertions. We conclude that metagenomics stands ready to document past and present infections, shedding light on the emergence, evolution, and spread of microbial pathogens

    XMM-Newton and Suzaku detection of an X-ray emitting shell around the pulsar wind nebula G54.1+0.3

    Full text link
    Recent X-ray observations have proved to be very effective in detecting previously unknown supernova remnant shells around pulsar wind nebulae (PWNe), and in these cases the characteristics of the shell provide further clues on the evolutionary stage of the embedded PWN. However, it is not clear why some PWNe are still "naked". We carried out an X-ray observational campaign targeted at the PWN G54.1+0.3, the "close cousin" of the Crab, with the aim to detect the associated SNR shell. We analyzed an XMM-Newton and Suzaku observations of G54.1+0.3 and we model out the contribution of dust scattering halo. We detected an intrinsic faint diffuse X-ray emission surrounding a hard spectrum, which can be modeled either with a power-law (gamma= 2.9) or with a thermal plasma model (kT=2.0 keV.). If the shell is thermal, we derive an explosion energy E=0.5-1.6x10^51 erg, a pre-shock ISM density of 0.2 cm^-3 and an age of about 2000 yr. Using these results in the MHD model of PWN-SNR evolution, we obtain an excellent agreement between the predicted and observed location of the shell and PWN shock.Comment: Accepted for publication in A&A, 8 pages, 5 figures, full-res version at http://www.astropa.inaf.it/Library/OAPA_preprints/h14298.pd

    Time-dependence in Relativistic Collisionless Shocks: Theory of the Variable "Wisps" in the Crab Nebula

    Full text link
    We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the ion orbits to fit the spatial separation of the wisps, we predict the period of time variability of the wisps that is consistent with the data. When coupled with a mechanism for non-thermal acceleration of the pairs, the compressions in the magnetic field and plasma density associated with the optical wisp structure naturally account for the location of X-ray features in the Crab. We also discuss the origin of the high energy ions and their acceleration in the equatorial current sheet of the pulsar wind.Comment: 13 pages, 4 figures, accepted to ApJ. High-resolution figures and mpeg movies available at http://astron.berkeley.edu/~anatoly/wisp

    LOFAR: A new radio telescope for low frequency radio observations: Science and project status

    Full text link
    LOFAR, the Low Frequency Array, is a large radio telescope consisting about 100 soccer field sized antenna stations spread over a region of 400 km in diameter. It will operate in the frequency range from ~10 to 240 MHz, with a resolution at 240 MHz of better than an arcsecond. Its superb sensitivity will allow for a broad range of astrophysical studies. In this contribution we first discuss four major areas of astrophysical research in which LOFAR will undoubtedly make important contributions: reionisation, distant galaxies and AGNs, transient radio sources and cosmic rays. Subsequently, we will discuss the technical concept of the instrument and the status of the LOFAR projectComment: 8 pages, 2 figures, to appear in the proceedings of the XXI Texas Symposium on Relativistic Astrophysics held on December 9--13 2002, in Florence, Ital

    Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    Get PDF
    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.Comment: 19 pages, 13 figure

    Reverberation of pulsar wind nebulae (I): Impact of the medium properties and other parameters upon the extent of the compression

    Full text link
    The standard approach to the long term evolution of pulsar wind nebulae (PWNe) is based on one-zone models treating the nebula as a uniform system. In particular for the late phase of evolved systems, many of the generally used prescriptions are based on educated guesses for which a proper assessment lacks. Using an advanced radiative code we evaluate the systematic impact of various parameters, like the properties of the supernova ejecta, of the inner pulsar, as well of the ambient medium, upon the extent of the reverberation phase of PWNe. We investigate how different prescriptions shift the starting time of the reverberation phase, how this affects the amount of the compression, and how much of this can be ascribable to the radiation processes. Some critical aspects are the description of the reverse shock evolution, the efficiency by which at later times material from the ejecta accretes onto the swept-up shell around the PWN, and finally the density, velocity and pressure profiles in the surrounding supernova remnant. We have explicitly treated the cases of the Crab Nebula, and of J1834.9--0846, taken to be representatives of the more and the less energetic pulsars, respectively. Especially for the latter object the prediction of large compression factors is confirmed, even larger in the presence of radiative losses, also confirming our former prediction of periods of super-efficiency during the reverberation phase of some PWNe.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    Latino and Black smokers in the Health and Retirement Study are more likely to quit: the role of light smoking

    Full text link
    Abstract Background Older persons are more vulnerable to tobacco mortality and less likely to make quit attempts. Less is known, however, about the role of race and ethnicity on quit rates in the U.S. Using a nationally representative data source of older adults in U.S., we aimed to study racial and ethnic differences in smoking cessation rates. Methods We used data from all waves of the Health and Retirement Study (HRS) between 1992-2012. The HRS is a longitudinal nationally representative survey of adults over the age of 50 in the United States. We followed current smokers at baseline (year 1992) until time to first quit. Race/ethnicity was the main predictor; gender, age, education, marital status, count of chronic medical conditions, depressive symptoms, and drinking at baseline were control variables. Cox regression was used for analysis of time to quit. Results Hazard ratios of quitting during the first ten (Hazard ratio = 1.51, p < 0.05) and 20 years (Hazard ratio = 1.46, p < 0.05) were larger for Latinos over the age of 50 compared to Whites. In addition, hazard ratios of quitting during the first 20 years (Hazard ratio = 1.19, p < 0.05) were larger for Blacks over the age of 50 compared to Whites. These findings were partially explained by cigarette consumption intensity, such that Latinos were lighter smokers and therefore more likely to quit than Whites. Conclusion Latinos and Blacks were more likely than Whites to quit smoking cigarettes within 20 years. However, this finding may be explained by cigarette consumption intensity.http://deepblue.lib.umich.edu/bitstream/2027.42/134608/1/12971_2016_Article_90.pd

    XMM-Newton observation of Kepler's supernova remnant

    Full text link
    We present the first results coming from the observation of Kepler's supernova remnant obtained with the EPIC instruments on board the XMM-Newton satellite. We focus on the images and radial profiles of the emission lines (Si K, Fe L, Fe K) and of the high energy continuum. Chiefly, the Fe L and Si K emission-line images are generally consistent with each other and the radial profiles show that the Si K emission extends to a larger radius than the Fe L emission (distinctly in the southern part of the remnant). Therefore, in contrast to Cas A, no inversion of the Si- and Fe-rich ejecta layers is observed in Kepler. Moreover, the Fe K emission peaks at a smaller radius than the Fe L emission, which implies that the temperature increases inwards in the ejecta. The 4-6 keV high energy continuum map shows the same distribution as the asymmetric emission-line images except in the southeast where there is a strong additional emission. A two color image of the 4-6 keV and 8-10 keV high energy continuum illustrates that the hardness variations of the continuum are weak all along the remnant except in a few knots. The asymmetry in the Fe K emission-line is not associated with any asymmetry in the Fe K equivalent width map. The Si K maps lead to the same conclusions. Hence, abundance variations do not cause the north-south brightness asymmetry. The strong emission in the north may be due to overdensities in the circumstellar medium. In the southeastern region of the remnant, the lines have a very low equivalent width and the X-ray emission is largely nonthermal.Comment: 15 pages, 15 figures, accepted for publication in A&

    Young core collapse supernova remnants and their supernovae

    Full text link
    Massive star supernovae can be divided into four categories depending on the amount of mass loss from the progenitor star and the star's radius: red supergiant stars with most of the H envelope intact (SN IIP), stars with some H but most lost (IIL, IIb), stars with all H lost (Ib, Ic), and blue supergiant stars with a massive H envelope (SN 1987A-like). Various aspects of the immediate aftermath of the supernova are expected to develop in different ways depending on the supernova category: mixing in the supernova, fallback on the central compact object, expansion of any pulsar wind nebula, interaction with circumstellar matter, and photoionization by shock breakout radiation. The observed properties of young supernova remnants allow many of them to be placed in one of the supernova categories; all the categories are represented except for the SN 1987A-like type. Of the remnants with central pulsars, the pulsar properties do not appear to be related to the supernova category. There is no evidence that the supernova categories form a mass sequence, as would be expected in a single star scenario for the evolution. Models for young pulsar wind nebulae expanding into supernova ejecta indicate initial pulsar periods of 10-100 ms and approximate equipartition between particle and magnetic energies. Ages are obtained for pulsar nebulae, including an age of 2400 pm 500 yr for 3C58, which is not consistent with an origin in SN 1181. There is no evidence that mass fallback plays a role in neutron star properties.Comment: 43 pages, ApJ, revised, discussion of 3C58 changed, in press for Feb. 1, 200
    • 

    corecore