15,742 research outputs found

    T-Branes and Geometry

    Get PDF
    T-branes are a non-abelian generalization of intersecting branes in which the matrix of normal deformations is nilpotent along some subspace. In this paper we study the geometric remnant of this open string data for six-dimensional F-theory vacua. We show that in the dual M-theory / IIA compactification on a smooth Calabi-Yau threefold X, the geometric remnant of T-brane data translates to periods of the three-form potential valued in the intermediate Jacobian of X. Starting from a smoothing of a singular Calabi-Yau, we show how to track this data in singular limits using the theory of limiting mixed Hodge structures, which in turn directly points to an emergent Hitchin-like system coupled to defects. We argue that the physical data of an F-theory compactification on a singular threefold involves specifying both a geometry as well as the remnant of three-form potential moduli and flux which is localized on the discriminant. We give examples of T-branes in compact F-theory models with heterotic duals, and comment on the extension of our results to four-dimensional vacua.Comment: v2: 80 pages, 2 figures, clarifications and references added, typos correcte

    T-Branes at the Limits of Geometry

    Get PDF
    Singular limits of 6D F-theory compactifications are often captured by T-branes, namely a non-abelian configuration of intersecting 7-branes with a nilpotent matrix of normal deformations. The long distance approximation of such 7-branes is a Hitchin-like system in which simple and irregular poles emerge at marked points of the geometry. When multiple matter fields localize at the same point in the geometry, the associated Higgs field can exhibit irregular behavior, namely poles of order greater than one. This provides a geometric mechanism to engineer wild Higgs bundles. Physical constraints such as anomaly cancellation and consistent coupling to gravity also limit the order of such poles. Using this geometric formulation, we unify seemingly different wild Hitchin systems in a single framework in which orders of poles become adjustable parameters dictated by tuning gauge singlet moduli of the F-theory model.Comment: v2: 65 pages, 6 figures, clarifications adde

    The discovery of trapped energetic electrons in the outer cusp

    Get PDF
    We report on the POLAR/CEPPAD discovery of a trapped, 60°\u3cθ\u3c120° pitch angle electron population in the outer cusp (7−9+ Re), whose energetic electron component extends from below 30 keV to ∼2 MeV. Because the time variability in the outer cusp precludes mapping with POLAR, we have carried out test particle simulations using the Tsyganenko 1996 model (T96) to demonstrate the trapping of these energy electrons in the outer cusp region and the resonant frequencies of its trapped motion. We discuss the boundaries and regions of the cusp trap and show that it is analogous to the dipole trap. We show that the phase space densities observed there are equal or greater than the phase space densities observed in the radiation belts at constant magnetic moment, thus allowing the possibility of diffusive filling of the radiation belts from the cus

    Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements

    Get PDF
    New, coordinated measurements from the International Solar-Terrestrial Physics (ISTP) constellation of spacecraft are presented to show the causes and effects of recurrent geomagnetic activity during recent solar minimum conditions. It is found using WIND and POLAR data that even for modest geomagnetic storms, relativistic electron fluxes are strongly and rapidly enhanced within the outer radiation zone of the Earth\u27s magnetosphere. Solar wind data are utilized to identify the drivers of magnetospheric acceleration processes. Yohkoh solar soft X-ray data are also used to identify the solar coronal holes that produce the high-speed solar wind streams which, in turn, cause the recurrent geomagnetic activity. It is concluded that even during extremely quiet solar conditions (sunspot minimum) there are discernible coronal holes and resultant solar wind streams which can produce intense magnetospheric particle acceleration. As a practical consequence of this Sun-Earth connection, it is noted that a long-lasting E\u3e1MeV electron event in late March 1996 appears to have contributed significantly to a major spacecraft (Anik E1) operational failure

    First energetic neutral atom images from Polar

    Get PDF
    Energetic neutral atoms are created when energetic magnetospheric ions undergo charge exchange with cold neutral atoms in the Earth\u27s tenuous extended atmosphere (the geocorona). Since they are unaffected by the Earth\u27s magnetic field, these energetic neutrals travel away in straight line trajectories from the points of charge exchange. The remote detection of these particles provides a powerful means through which the global distribution and properties of the geocorona and ring current can be inferred. Due to its 2 × 9 RE polar orbit, the Polar spacecraft provides an excellent platform from which to observe ENAs because it spends much of its time in the polar caps which are usually free from the contaminating energetic charged particles that make observations of ENAs more difficult. In this brief report, we present the first ENA imaging results from Polar. Storm-time ENA images are presented for a northern polar cap apogee pass on August 29, 1996 and for a southern polar cap perigee pass on October 23, 1996. As well, we show with a third event (July 31, 1996) that ENA emissions can also be detected in association with individual substorm

    Penrose Diagram for a Transient Black Hole

    Full text link
    A Penrose diagram is constructed for a spatially coherent black hole that smoothly begins an accretion, then excretes symmetrically as measured by a distant observer, with the initial and final states described by a metric of Minkowski form. Coordinate curves on the diagram are computationally derived. Causal relationships between space-time regions are briefly discussed. The life cycle of the black hole demonstrably leaves asymptotic observers in an unaltered Minkowski space-time of uniform conformal scale.Comment: 14 pages, 9 figures, spelling correction

    The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for maxBCG Galaxy Clusters

    Get PDF
    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG-galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202+/-10 km/s for small groups to more than 854+/-102 km/s for large clusters. We show the scatter to be at most 40.5+/-3.5%, declining to 14.9+/-9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass-observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.Comment: 25 pages, 15 figures, 2 tables, published in Ap

    Impact of Systematics on SZ-Optical Scaling Relations

    Full text link
    One of the central goals of multi-wavelength galaxy cluster cosmology is to unite all cluster observables to form a consistent understanding of cluster mass. Here, we study the impact of systematic effects from optical cluster catalogs on stacked SZ signals. We show that the optically predicted Y-decrement can vary by as much as 50% based on the current 2 sigma systematic uncertainties in the observed mass-richness relationship. Mis-centering and impurities will suppress the SZ signal compared to expectations for a clean and perfectly centered optical sample, but to a lesser degree. We show that the level of these variations and suppression is dependent on the amount of systematics in the optical cluster catalogs. We also study X-ray luminosity-dependent sub-sampling of the optical catalog and find that it creates Malmquist bias increasing the observed Y-decrement of the stacked signal. We show that the current Planck measurements of the Y-decrement around SDSS optical clusters and their X-ray counterparts are consistent with expectations after accounting for the 1 sigma optical systematic uncertainties using the Johnston mass richness relation.Comment: 6 pages, 4 figures. Revised to match version accepted in the Astrophysical Journa

    Discontinuous Molecular Dynamics for Semi-Flexible and Rigid Bodies

    Full text link
    A general framework for performing event-driven simulations of systems with semi-flexible or rigid bodies interacting under impulsive torques and forces is outlined. Two different approaches are presented. In the first, the dynamics and interaction rules are derived from Lagrangian mechanics in the presence of constraints. This approach is most suitable when the body is composed of relatively few point masses or is semi-flexible. In the second method, the equations of rigid bodies are used to derive explicit analytical expressions for the free evolution of arbitrary rigid molecules and to construct a simple scheme for computing interaction rules. Efficient algorithms for the search for the times of interaction events are designed in this context, and the handling of missed interaction events is discussed.Comment: 16 pages, double column revte

    The influence of nonrandom extra-pair paternity on heritability estimates derived from wild pedigrees

    Get PDF
    Quantitative genetic analysis is often fundamental for understanding evolutionary processes in wild populations. Avian populations provide a model system due to the relative ease of inferring relatedness among individuals through observation. However, extra-pair paternity (EPP) creates erroneous links within the social pedigree. Previous work has suggested this causes minor underestimation of heritability if paternal misassignment is random and hence not influenced by the trait being studied. Nevertheless, much literature suggests numerous traits are associated with EPP and the accuracy of heritability estimates for such traits remains unexplored. We show analytically how nonrandom pedigree errors can influence heritability estimates. Then, combining empirical data from a large great tit (Parus major) pedigree with simulations, we assess how heritability estimates derived from social pedigrees change depending on the mode of the relationship between EPP and the focal trait. We show that the magnitude of the underestimation is typically small (<15%). Hence, our analyses suggest that quantitative genetic inference from pedigrees derived from observations of social relationships is relatively robust; our approach also provides a widely applicable method for assessing the consequences of nonrandom EPP
    corecore