Abstract

A general framework for performing event-driven simulations of systems with semi-flexible or rigid bodies interacting under impulsive torques and forces is outlined. Two different approaches are presented. In the first, the dynamics and interaction rules are derived from Lagrangian mechanics in the presence of constraints. This approach is most suitable when the body is composed of relatively few point masses or is semi-flexible. In the second method, the equations of rigid bodies are used to derive explicit analytical expressions for the free evolution of arbitrary rigid molecules and to construct a simple scheme for computing interaction rules. Efficient algorithms for the search for the times of interaction events are designed in this context, and the handling of missed interaction events is discussed.Comment: 16 pages, double column revte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019