A general framework for performing event-driven simulations of systems with
semi-flexible or rigid bodies interacting under impulsive torques and forces is
outlined. Two different approaches are presented. In the first, the dynamics
and interaction rules are derived from Lagrangian mechanics in the presence of
constraints. This approach is most suitable when the body is composed of
relatively few point masses or is semi-flexible. In the second method, the
equations of rigid bodies are used to derive explicit analytical expressions
for the free evolution of arbitrary rigid molecules and to construct a simple
scheme for computing interaction rules. Efficient algorithms for the search for
the times of interaction events are designed in this context, and the handling
of missed interaction events is discussed.Comment: 16 pages, double column revte