1,492 research outputs found
Supernovae, CMB, and Gravitational Leakage into Extra Dimensions
We discuss observational constraints coming from CMB and type Ia supernovae,
for the model of accelerated universe produced by gravitational leakage into
extra dimensions. Our fits indicate that the model is currently in agreement
with the data. We also give the equations governing the evolution of
cosmological perturbations. Future observations will be able to severely
constrain the model.Comment: 20 pages, 6 figures, typos corrected and minor changes before
publicatio
The Increasing use of Prereduced Iron Ores in Electric Arc Furnaces
Datas about the increasing use of prereduced iron ores, around the world, in electric arc furnaces.Development of continuous charging system such of these of HyLSA (Mexico), Contimelt (Steko- Luigi) Korf (Georgetown, USA and Hamburg, Germany), TAMSA-TECH1NT (Mexico).
Comments about continuous melting: necessity of rea-ching optimal conditions to melt prereducea iron ores i.e. high electrical power, low electrode consumption, low refractory wear of the lining of the furnace. Possibilit-ies, advantage and a difficulties of utilization of electrical intensity in the arcs or shadowing the arcs in the slag.
Equipment used for IRSID experiments: 6 t 3000 kVA elec-tric arc furnace with special continuous charging devices. Operating charging and melting pratice with shadowing of the radiation from the arcs bthrough, first, a solid mass of prereduced iron• ores in the center of the furnace and, second, the boiling slag.
Main results with a number of samples of prereduced iron ore. Relation between available electrical energy PE and useful power Pu needed to melt and heat metal and slag and to cover the metallurgical reactions. Comparison between scrap and prereduced iron ores charging and melting.
Application to commercial plants extrapolation of our tests and operating procedure with recommendation for large scale furnaces.Automation of electric arc furnaces : principles, operating procedures. The next step could be the continuous arc steelmaking furnace
Constraining the CDM and Galileon models with recent cosmological data
The Galileon theory belongs to the class of modified gravity models that can
explain the late-time accelerated expansion of the Universe. In previous works,
cosmological constraints on the Galileon model were derived, both in the
uncoupled case and with a disformal coupling of the Galileon field to matter.
There, we showed that these models agree with the most recent cosmological
data. In this work, we used updated cosmological data sets to derive new
constraints on Galileon models, including the case of a constant conformal
Galileon coupling to matter. We also explored the tracker solution of the
uncoupled Galileon model. After updating our data sets, especially with the
latest \textit{Planck} data and BAO measurements, we fitted the cosmological
parameters of the CDM and Galileon models. The same analysis framework
as in our previous papers was used to derive cosmological constraints, using
precise measurements of cosmological distances and of the cosmic structure
growth rate. We showed that all tested Galileon models are as compatible with
cosmological data as the CDM model. This means that present
cosmological data are not accurate enough to distinguish clearly between both
theories. Among the different Galileon models, we found that a conformal
coupling is not favoured, contrary to the disformal coupling which is preferred
at the level over the uncoupled case. The tracker solution of the
uncoupled Galileon model is also highly disfavoured due to large tensions with
supernovae and \textit{Planck}+BAO data. However, outside of the tracker
solution, the general uncoupled Galileon model, as well as the general
disformally coupled Galileon model, remain the most promising Galileon
scenarios to confront with future cosmological data. Finally, we also discuss
constraints coming from Lunar Laser Ranging experiment and gravitational wave
speed of propagation.Comment: 22 pages, 17 figures, published version in A&
First experimental constraints on the disformally coupled Galileon model
The Galileon model is a modified gravity model that can explain the late-time
accelerated expansion of the Universe. In a previous work, we derived
experimental constraints on the Galileon model with no explicit coupling to
matter and showed that this model agrees with the most recent cosmological
data. In the context of braneworld constructions or massive gravity, the
Galileon model exhibits a disformal coupling to matter, which we study in this
paper. After comparing our constraints on the uncoupled model with recent
studies, we extend the analysis framework to the disformally coupled Galileon
model and derive the first experimental constraints on that coupling, using
precise measurements of cosmological distances and the growth rate of cosmic
structures. In the uncoupled case, with updated data, we still observe a low
tension between the constraints set by growth data and those from distances. In
the disformally coupled Galileon model, we obtain better agreement with data
and favour a non-zero disformal coupling to matter at the level.
This gives an interesting hint of the possible braneworld origin of Galileon
theory.Comment: 9 pages, 6 figures, updated versio
Photometry of supernovae in an image series : methods and application to the Supernova Legacy Survey (SNLS)
We present a technique to measure lightcurves of time-variable point sources
on a spatially structured background from imaging data. The technique was
developed to measure light curves of SNLS supernovae in order to infer their
distances. This photometry technique performs simultaneous PSF photometry at
the same sky position on an image series. We describe two implementations of
the method: one that resamples images before measuring fluxes, and one which
does not. In both instances, we sketch the key algorithms involved and present
the validation using semi-artificial sources introduced in real images in order
to assess the accuracy of the supernova flux measurements relative to that of
surrounding stars. We describe the methods required to anchor these PSF fluxes
to calibrated aperture catalogs, in order to derive SN magnitudes. We find a
marginally significant bias of 2 mmag of the after-resampling method, and no
bias at the mmag accuracy for the non-resampling method. Given surrounding star
magnitudes, we determine the systematic uncertainty of SN magnitudes to be less
than 1.5 mmag, which represents about one third of the current photometric
calibration uncertainty affecting SN measurements. The SN photometry delivers
several by-products: bright star PSF flux mea- surements which have a
repeatability of about 0.6%, as for aperture measurements; we measure relative
astrometric positions with a noise floor of 2.4 mas for a single-image bright
star measurement; we show that in all bands of the MegaCam instrument, stars
exhibit a profile linearly broadening with flux by about 0.5% over the whole
brightness range.Comment: Accepted for publication in A&A. 20 page
Can hyperbolic phase of Brans-Dicke field account for Dark Matter?
We show that the introduction of a hyperbolic phase for Brans-Dicke (BD)
field results in a flat vacuum cosmological solution of Hubble parameter H and
fractional rate of change of BD scalar field, F which asymptotically approach
constant values. At late stages, hyperbolic phase of BD field behaves like dark
matter
The SkyMapper Transient Survey
The SkyMapper 1.3 m telescope at Siding Spring Observatory has now begun
regular operations. Alongside the Southern Sky Survey, a comprehensive digital
survey of the entire southern sky, SkyMapper will carry out a search for
supernovae and other transients. The search strategy, covering a total
footprint area of ~2000 deg2 with a cadence of days, is optimised for
discovery and follow-up of low-redshift type Ia supernovae to constrain cosmic
expansion and peculiar velocities. We describe the search operations and
infrastructure, including a parallelised software pipeline to discover variable
objects in difference imaging; simulations of the performance of the survey
over its lifetime; public access to discovered transients; and some first
results from the Science Verification data.Comment: 13 pages, 11 figures; submitted to PAS
Scaling attractors for quintessence in flat universe with cosmological term
For evolution of flat universe, we classify late time and future attractors
with scaling behavior of scalar field quintessence in the case of potential,
which, at definite values of its parameters and initial data, corresponds to
exact scaling in the presence of cosmological constant.Comment: 11 pages, 16 eps-figures, revtex4, reference with comment adde
An Efficient Approach to Obtaining Large Numbers of Distant Supernova Host Galaxy Redshifts
We use the wide-field capabilities of the 2dF fibre positioner and the
AAOmega spectrograph on the Anglo-Australian Telescope (AAT) to obtain
redshifts of galaxies that hosted supernovae during the first three years of
the Supernova Legacy Survey (SNLS). With exposure times ranging from 10 to 60
ksec per galaxy, we were able to obtain redshifts for 400 host galaxies in two
SNLS fields, thereby substantially increasing the total number of SNLS
supernovae with host galaxy redshifts. The median redshift of the galaxies in
our sample that hosted photometrically classified Type Ia supernovae (SNe Ia)
is 0.77, which is 25% higher than the median redshift of spectroscopically
confirmed SNe Ia in the three-year sample of the SNLS. Our results demonstrate
that one can use wide-field fibre-fed multi-object spectrographs on 4m
telescopes to efficiently obtain redshifts for large numbers of supernova host
galaxies over the large areas of sky that will be covered by future
high-redshift supernova surveys, such as the Dark Energy Survey.Comment: 22 pages, 4 figures, accepted for publication in PAS
- …