42 research outputs found

    Current Developments of Analytical Methodologies for Aflatoxins’ Determination in Food during the Last Decade (2013–2022), with a Particular Focus on Nuts and Nut Products

    Get PDF
    This review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques

    Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction

    Get PDF
    Heart failure with preserved ejection fraction (HFpEF) is an increasingly studied entity accounting for 50% of all diagnosed heart failure and that has claimed its own dignity being markedly different from heart failure with reduced EF in terms of etiology and natural history (Graziani et al., 2018). Recently, a growing body of evidence points the finger toward microvascular dysfunction as the major determinant of the pathological cascade that justifies clinical manifestations (Crea et al., 2017). The high burden of comorbidities such as metabolic syndrome, hypertension, atrial fibrillation, chronic kidney disease, obstructive sleep apnea, and similar, could lead to a systemic inflammatory state that impacts the physiology of the endothelium and the perivascular environment, engaging complex molecular pathways that ultimately converge to myocardial fibrosis, stiffening, and dysfunction (Paulus and Tschope, 2013). These changes could even self-perpetrate with a positive feedback where hypoxia and locally released inflammatory cytokines trigger interstitial fibrosis and hypertrophy (Ohanyan et al., 2018). Identifying microvascular dysfunction both as the cause and the maintenance mechanism of this condition has opened the field to explore specific pharmacological targets like nitric oxide (NO) pathway, sarcomeric titin, transforming growth factor beta (TGF-β) pathway, immunomodulators or adenosine receptors, trying to tackle the endothelial impairment that lies in the background of this syndrome (Graziani et al., 2018;Lam et al., 2018). Yet, many questions remain, and the new data collected still lack a translation to improved treatment strategies. To further elaborate on this tangled and exponentially growing topic, we will review the evidence favoring a microvasculature-driven etiology of this condition, its clinical correlations, the proposed diagnostic workup, and the available/hypothesized therapeutic options to address microvascular dysfunction in the failing heart

    PAK1 Protein Expression in the Auditory Cortex of Schizophrenia Subjects

    Get PDF
    Deficits in auditory processing are among the best documented endophenotypes in schizophrenia, possibly due to loss of excitatory synaptic connections. Dendritic spines, the principal post-synaptic target of excitatory projections, are reduced in schizophrenia. p21-activated kinase 1 (PAK1) regulates both the actin cytoskeleton and dendritic spine density, and is a downstream effector of both kalirin and CDC42, both of which have altered expression in schizophrenia. This study sought to determine if there is decreased auditory cortex PAK1 protein expression in schizophrenia through the use of quantitative western blots of 25 schizophrenia subjects and matched controls. There was no significant change in PAK1 level detected in the schizophrenia subjects in our cohort. PAK1 protein levels within subject pairs correlated positively with prior measures of total kalirin protein in the same pairs. PAK1 level also correlated with levels of a marker of dendritic spines, spinophilin. These latter two findings suggest that the lack of change in PAK1 level in schizophrenia is not due to limited sensitivity of our assay to detect meaningful differences in PAK1 protein expression. Future studies are needed to evaluate whether alterations in PAK1 phosphorylation states, or alterations in protein expression of other members of the PAK family, are present in schizophrenia

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    Caractérisation des périodes de sécheresse sur le domaine de l'Afrique simulée par le Modèle Régional Canadien du Climat (MRCC5)

    Get PDF
    Les conséquences des changements climatiques sur la fréquence ainsi que sur l'intensité des précipitations auront un impact direct sur les périodes de sécheresse et par conséquent sur différents secteurs économiques tels que le secteur de l'agriculture. Ainsi, dans cette étude, l'habilité du Modèle Régional Canadien du Climat (MRCC5) à simuler les différentes caractéristiques des périodes de sécheresse est évaluée pour 4 seuils de précipitation soit 0.5 mm, 1 mm, 2 mm et 3 mm. Ces caractéristiques incluent le nombre de jours secs, le nombre de périodes de sécheresse ainsi que le maximum de jours consécutifs sans précipitation associé à une récurrence de 5 ans. Les résultats sont présentés pour des moyennes annuelles et saisonnières. L'erreur de performance est évaluée en comparant le MRCC5 piloté par ERA-Interim aux données d'analyses du GPCP pour le climat présent (1997-2008). L'erreur due aux conditions aux frontières c'est-à-dire les erreurs de pilotage du MRCC5, soit par CanESM2 et par ERA-Interim ainsi que l'évaluation de la valeur ajoutée du MRCC5 face au CanESM2 sont également analysées. L'analyse de ces caractéristiques est également faite dans un contexte de climat changeant pour deux périodes futures, soit 2041-2070 et 2071-2100 à l'aide du MRCC5 piloté par le modèle de circulation générale CanESM2 de même que par le modèle CanESM2 sous le scénario RCP 4.5. Les résultats suggèrent que le MRCC5 piloté par ERA-Interim a tendance à surestimer la moyenne annuelle du nombre de jours secs ainsi que le maximum de jours consécutifs sans précipitation associé à une récurrence de 5 ans dans la plupart des régions de l'Afrique et une tendance à sous-estimer le nombre de périodes de sécheresse. En général, l'erreur de performance est plus importante que l'erreur due aux conditions aux frontières pour les différentes caractéristiques de périodes de sécheresse. Pour les régions équatoriales, les changements appréhendés par le MRCC5 piloté par CanESM2 pour les différentes caractéristiques de périodes de sécheresse et pour deux périodes futures (2041-2070 et 2071-2100), suggèrent une augmentation significatives du nombre de jours secs ainsi que du maximum de jours consécutifs sans précipitation associé à une récurrence de 5 ans. Une diminution significative du nombre de périodes de sécheresse est aussi prévue.\ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : Modèle Régional du Climat, Changement climatique, Jours secs, Nombre de périodes de sécheresse, Événement de faible récurrence, Afriqu

    Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction

    No full text
    Heart failure with preserved ejection fraction (HFpEF) is an increasingly studied entity accounting for 50% of all diagnosed heart failure and that has claimed its own dignity being markedly different from heart failure with reduced EF in terms of etiology and natural history (Graziani et al., 2018). Recently, a growing body of evidence points the finger toward microvascular dysfunction as the major determinant of the pathological cascade that justifies clinical manifestations (Crea et al., 2017). The high burden of comorbidities such as metabolic syndrome, hypertension, atrial fibrillation, chronic kidney disease, obstructive sleep apnea, and similar, could lead to a systemic inflammatory state that impacts the physiology of the endothelium and the perivascular environment, engaging complex molecular pathways that ultimately converge to myocardial fibrosis, stiffening, and dysfunction (Paulus and Tschope, 2013). These changes could even self-perpetrate with a positive feedback where hypoxia and locally released inflammatory cytokines trigger interstitial fibrosis and hypertrophy (Ohanyan et al., 2018). Identifying microvascular dysfunction both as the cause and the maintenance mechanism of this condition has opened the field to explore specific pharmacological targets like nitric oxide (NO) pathway, sarcomeric titin, transforming growth factor beta (TGF-β) pathway, immunomodulators or adenosine receptors, trying to tackle the endothelial impairment that lies in the background of this syndrome (Graziani et al., 2018;Lam et al., 2018). Yet, many questions remain, and the new data collected still lack a translation to improved treatment strategies. To further elaborate on this tangled and exponentially growing topic, we will review the evidence favoring a microvasculature-driven etiology of this condition, its clinical correlations, the proposed diagnostic workup, and the available/hypothesized therapeutic options to address microvascular dysfunction in the failing heart

    Sodium-Glucose Cotransporter Inhibitors Reduce Mortality and Morbidity in Patients with Heart Failure: Evidence from a Meta-Analysis of Randomized Trials

    No full text
    Background:Recent trials demonstrated the clinical efficacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in patients with heart failure (HF), regardless of the presence or absence of type 2 diabetes. These data may allow the use of this innovative drug class in clinical routine for treating these patients.Study Question:We aimed at further clarifying the role of SGLT2i in patients with diagnosis of HF, capitalizing on pooled sample size and heightened power for clinically relevant safety and efficacy outcomes.Data Sources:We conducted a systematic search of PubMed, reference lists of relevant articles, and Medline database from inception until March 1, 2021.Study Design:This meta-analysis was completed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched for randomized trials that evaluated the cardiovascular effects of SGLT2i in patients with HF. Three investigators independently assessed study eligibility, extracted the data, and assessed risk of bias. Hazard ratios and 95% confidence intervals (CIs) were pooled and meta-analyzed using a random-effect model. Numbers needed to treat (NNT) with the relative 95% CIs were also calculated. The primary outcome was a composite of HF hospitalization or an urgent visit for worsening HF and cardiovascular death.Results:Three trials were included in the study. Overall, treatment with SGLT2i was associated with a lower risk of the primary composite outcome [hazard ratios 0.73, 95% CI (0.67-0.80), NNT = 11.3]. Similarly, there was a significantly reduced risk of cardiovascular death, all-cause death, HF hospitalization and need for urgent treatment for HF, and HF hospitalization.Conclusions:Therefore, the available evidence supports the routine use of these drugs as standard-of-care, also given the highly favorable NNTs
    corecore