63 research outputs found

    Ultra High Resolution Transmission Electron Microscopy of Matrix Mineral Grains in CM Chondrites: Preaccretionary or Parent Body Aqueous Processing?

    Get PDF
    CM chondrites are highly hydrated meteorites associated with a parent asteroid that has experienced significant aqueous processing. The meteoritic evidence indicates that these non-differentiated asteroids are formed by fine-grained minerals embedded in a nanometric matrix that preserves chemical clues of the forming environment. So far there are two hypothesis to explain the presence of hydrated minerals in the content of CM chondrites: one is based on textural features in chondrule-rim boundaries [1-3], and the other ‘preaccretionary’ hypothesis proposes the incorporation of hydrated phases from the protoplanetary disk [4-6]. The highly porous structure of these chondrites is inherited from the diverse materials present in the protoplanetary disk environment. These bodies were presumably formed by low relative velocity encounters that led to the accretion of silicate-rich chondrules, refractory Ca- and Al-rich inclusions (CAIs), metal grains, and the fine-grained materials forming the matrix. Owing to the presence of significant terrestrial water in meteorite finds [7], here we have focused on two CM chondrite falls with minimal terrestrial processing: Murchison and Cold Bokkeveld. Anhydrous carbonaceous chondrite matrices are usually represented by highly chemically unequilibrated samples that contain distinguishable stellar grains. Other chondrites have experienced hydration and chemical homogeneization that reveal parent body processes. We have studied CM chondrites because these meteorites have experienced variable hydration levels [8-10]. It is important to study the textural effects of aqueous alteration in the main minerals to decipher which steps and environments promote bulk chemistry changes, and create the distinctive alteration products. It is thought that aqueous alteration has particularly played a key role in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials [7, 11, 12]. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive [5, 11]

    Ultra High Resolution Transmission Electron Microscopy of Matrix Mineral Grains in CM Chondrites: Preaccretionary or Parent Body Aqueous Processing?

    Get PDF
    CM chondrites are highly hydrated meteorites associated with a parent asteroid that has experienced significant aqueous processing. The meteoritic evidence indicates that these non-differentiated asteroids are formed by fine-grained minerals embedded in a nanometric matrix that preserves chemical clues of the forming environment. So far there are two hypothesis to explain the presence of hydrated minerals in the content of CM chondrites: one is based on textural features in chondrule-rim boundaries [1-3], and the other ‘preaccretionary’ hypothesis proposes the incorporation of hydrated phases from the protoplanetary disk [4-6]. The highly porous structure of these chondrites is inherited from the diverse materials present in the protoplanetary disk environment. These bodies were presumably formed by low relative velocity encounters that led to the accretion of silicate-rich chondrules, refractory Ca- and Al-rich inclusions (CAIs), metal grains, and the fine-grained materials forming the matrix. Owing to the presence of significant terrestrial water in meteorite finds [7], here we have focused on two CM chondrite falls with minimal terrestrial processing: Murchison and Cold Bokkeveld. Anhydrous carbonaceous chondrite matrices are usually represented by highly chemically unequilibrated samples that contain distinguishable stellar grains. Other chondrites have experienced hydration and chemical homogeneization that reveal parent body processes. We have studied CM chondrites because these meteorites have experienced variable hydration levels [8-10]. It is important to study the textural effects of aqueous alteration in the main minerals to decipher which steps and environments promote bulk chemistry changes, and create the distinctive alteration products. It is thought that aqueous alteration has particularly played a key role in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials [7, 11, 12]. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive [5, 11]

    Estudio de la idoneidad de un nuevo hormigón estructural fabricado con áridos ligeros reforzados con fibra de carbono sinterizados a partir de residuos

    Get PDF
    The suitability of three new lightweight aggregates containing carbon fiber residues (CAs) as components in structural lightweight concrete has been studied. Prismatic concrete specimens were prepared using these CAs as a coarse fraction. Additional specimens of normal-weight aggregate, commercial lightweight aggregate and mortar were prepared for comparison. The CA-concrete samples (CACs) have yielded compressive strength values between 35 and 55 MPa as well as low density and thermal conductivity results. Furthermore, the CACs have displayed the highest ratios of mechanical strength over density and the thermal conductivity, which means that there is a better balance between their mechanical and physical properties than in the other samples studied. These results indicate that the new CAs could have great potential for use in structural lightweight concrete, also complying with the principles of the Circular Economy.Este estudio pretende comprobar la idoneidad de unos novedosos áridos ligeros sinterizados con residuos de fibra de carbono (CAs) en la fabricación de hormigón ligero estructural. Se prepararon probetas prismáticas de hormigón, utilizando estos CAs como fracción gruesa, comparándose a su vez con probetas fabricadas con un árido convencional, un árido ligero comercial y mortero. Las muestras de hormigón con los áridos CA (en adelante CAC) han dado lugar a valores de resistencia a compresión entre 35 y 55 MPa, así como a resultados bajos de densidad y conductividad térmica, mostrando además las ratios más altas al relacionar estos tres parámetros. Esto indicaría por tanto un mejor equilibrio entre las propiedades mecánicas y físicas que los obtenidos en las otras muestras estudiadas. Estos resultados apuntan a que los nuevos CAs podrían tener un gran potencial para su uso en hormigón ligero estructural, cumpliendo además los principios de la Economía Circular

    Primeros datos del magmatismo pérmico medio-superior del SE de la Cordillera Ibérica: caracterización y comparación con magmatismos contemporáneos del Tethys occidental

    Get PDF
    A multiple basic to intermediate sill is reported for the first time in the south-eastern Iberian Ranges. It is composed of several tabular to irregular levels intercalated within the fluvial sediments of the Alcotas Formation (Middle-Upper Permian). The sill could represent the youngest Paleozoic subvolcanic intrusion in the Iberian Ranges. The igneous rocks are classified as basaltic andesites. They show a subophitic microstructure constituted by plagioclase (An62 – An6), augite (En48Wo44Fs7 –En46Wo39Fs15), pseudomorphosed olivine, minor amounts of oxides (magnetite and ilmenite) and accessory F-apatite. According to the mineralogy and whole-rock composition, their geochemical affinity is transitional from subalkaline to alkaline. Radiometric dating of the sill is not feasible due to its significant alteration. Field criteria, however, suggest an emplacement coeval to the deposition of the Alcotas Formation (Middle-Upper Permian). This hypothesis is supported by the transitional affinity of these rocks, similar to other Middle-Upper Permian magmatisms in the western Tethys, e.g., from the Pyrenees. Taking into account their isotopic signature (εSr: -6.8 to -9.2; εNd: +1.7 to +8.3), an enriched mantle source with the involvement of a HIMU component has been identified. This interpretation is supported by the trace element contents. Some of these HIMU characteristics have been recognised in the Middle-Upper Permian magmatisms of the Central Pyrenees (Anayet Basin) and the High Atlas (Argana Basin). However, none of these source features are shared with other Middle-Upper Permian magmatisms of the western Tethys (Catalonian Coastal Ranges, Corsica-Sardinia and southern France), nor with the Lower Permian magmatism of the Iberian Ranges. These differences support the presence of a heterogeneous mantle in the western Tethys during the Permian.Se describe por primera vez en el sudeste de la Cordillera Ibérica un sill múltiple de carácter básico a intermedio. Está compuesto por varios cuerpos tabulares a irregulares intercalados entre los sedimentos de origen fluvial de la Formación Alcotas (Pérmico Medio-Superior). El sill podría representar la intrusión subvolcánica paleozoica más reciente en la Cordillera Ibérica. Estas rocas subvolcánicas se clasifican como andesitas basálticas. Muestran una textura subofítica constituida por plagioclasa (An62 – An6), augita (En48Wo44Fs7 –En46Wo39Fs15), pseudomorfos de olivino, minerales opacos (magnetita e ilmenita) y F-apatito accesorio. De acuerdo con su composición mineral y de roca total, su afinidad geoquímica es transicional entre subalcalina y alcalina. La datación radiométrica del sill no es posible debido a su elevado grado de alteración. No obstante, los criterios de campo sugieren un emplazamiento contemporáneo con el depósito de la Formación Alcotas (Pérmico Medio-Superior). Esta hipótesis está apoyada por la afinidad transicional de estas rocas, similar a otros episodios magmáticos del Pérmico Medio-Superior en el Tethys occidental, como los que afloran en los Pirineos. Teniendo en cuenta su signatura isotópica (εSr: -6.8 a -9.2; εNd: +1.7 a +8.3), se propone un origen a partir de un manto enriquecido, con la participación de un componente de tipo HIMU. Esta interpretación está apoyada por sus contenidos en elementos traza. Algunas de estas características del protolito han sido reconocidas en los magmatismos del Pérmico Medio-Superior del Pirineo (cuenca del Anayet) y del Alto Atlas (cuenca de Argana), pero no son habituales en otros magmatismos de edad Pérmico Medio-Superior del Tethys occidental (Cadenas Costero Catalanas, Córcega-Cerdeña y Sur de Francia), ni en el magmatismo Pérmico Inferior de la Cordillera Ibérica. Estas diferencias apoyan la presencia de un manto heterogéneo en el Tethys occidental durante el Pérmico

    Petrographic and geochemical evidence for multiphase formation of carbonates in the Martian orthopyroxenite Allan Hills 84001

    Get PDF
    This research has been funded by the Spanish Ministry of Science and Innovation (projects: AYA2011‐26,522, AYA 2015‐67175‐P, CTQ2015‐62,635‐ERC, and CTQ2014‐60,119‐P to which J.M. Trigo‐Rodríguez and C.E. Moyano‐Cambero acknowledge financial support). The UK Science and Technology Facilities Council is also thanked for funding through grants ST/H002960/1, ST/K000942/1, and ST/L002167/1. ICN2 and ICMAB acknowledge support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grants SEV‐2013‐0295 and SEV‐2015‐0496, respectively. We acknowledge B. Ballesteros and M. Rosado from the ICN2 Electron Microscopy Division, and A. Fernández from the ICTS (National Center of Electronic Microscopy) for the SEM, EDS, and microprobe measurements. We also thank the NASA Meteorite Working Group, and the Johnson Space Center for providing the ALH 84001,82 section. This study was done in the frame of a PhD on Physics at the Autonomous University of Barcelona (UAB) under the direction of J. M. Trigo‐Rodríguez.Peer reviewedPublisher PD

    The impact of neos and their fragments recorded from the ground : ongoing research lines of the spanish fireball network

    Get PDF
    A continuous monitoring of the night sky all over Spain will be completed in 2009. This involves the recording over a very large surface area of 500,000 km2, but new CCD and video cameras operated by the Spanish Meteor and Fireball Network (SPMN) allows this target to be achieved. Through the use of these new techniques the SPMN can obtain new information regarding the dynamical processes that deliver meteorites to the Earth. It transpires that the main asteroid belt is not the only source of these fireballs, Near Earth Objects (NEOs) and Jupiter Family Comets (JFCs) may also play a role. To obtain more information in this regard, new efforts are needed to compare the orbits of large meteoroids reaching the Earth with those of the members of NEO and JFC populations. By numerically integrating their orbits back in time it may be possible to identify meteoroids delivered by other mechanisms like such as catastrophic disruptions or collisions

    The 2011 October Draconids outburst. I. Orbital elements, meteoroid fluxes and 21P/Giacobini-Zinner delivered mass to Earth

    Get PDF
    On October 8th, 2011 the Earth crossed the dust trails left by comet 21P/Giacobini-Zinner during its XIX and XX century perihelion approaches with the comet being close to perihelion. The geometric circumstances of that encounter were thus favorable to produce a meteor storm, but the trails were much older than in the 1933 and 1946 historical encounters. As a consequence the 2011 October Draconid display exhibited several activity peaks with Zenithal Hourly Rates of about 400 meteors per hour. In fact, if the display had been not forecasted, it could have passed almost unnoticed as was strongly attenuated for visual observers due to the Moon. This suggests that most meteor storms of a similar nature could have passed historically unnoticed under unfavorable weather and Moon observing conditions. The possibility of obtaining information on the physical properties of cometary meteoroids penetrating the atmosphere under low-geocentric velocity encounter circumstances motivated us to set up a special observing campaign. Added to the Spanish Fireball Network wide-field all-sky and CCD video monitoring, other high-sensitivity 1/2" black and white CCD video cameras were attached to modified medium-field lenses for obtaining high resolution orbital information. The trajectory, radiant, and orbital data of 16 October Draconid meteors observed at multiple stations are presented. The results show that the meteors appeared from a geocentric radiant located at R.A.=263.0+-0.4 deg. and Dec.=+55.3+-0.3 deg. that is in close agreement with the radiant predicted for the 1873-1894 and the 1900 dust trails. The estimated mass of material from 21P/Giacobini-Zinner delivered to Earth during the six-hours outburst was around 950+-150 kg.Comment: Manuscript in press in Monthly Notices of the Royal Astronomical Society, submitted to MNRAS on November 16th, 2012 Accepted for publication in MNRAS on April 28th, 2013 Manuscript Pages: 21 Tables: 8 Figures: 4 Manuscript associated: "The 2011 October Draconids outburst. II. Meteoroid chemical abundances from fireball spectroscopy" by J.M. Madiedo is also in press in the same journa

    Evolución del estuario del rio piedras (Huelva) durante el Holoceno

    Get PDF
    Trabajo presentado en la XIV Reunión Nacional de Cuaternario, celebrada en Granada (España), del 30 de junio al 2 de julio de 2015This paper presents the preliminary results of a multidisciplinary study of the mixed wave-and-tide dominated estuary of the Piedras River in the mesotidal coast of the Gulf of Cadix. Nineteen hand cores and three mechanical drill cores allowed reconstructing the history of infill. Overlying the erosional surface incising the Mio-pliocene pre-estuarine deposits there follows a succession of fluvio-marine deposits (ca. 9000 calBP), an open estuarine facies with central basin muds and sandy tidal delta interbeds, with a maximum ca. 6.500 calBP, and a transition to tidal flat deposits after ca. 2800 calBP. Two episodes of extreme wave energy at ca. 3000 calBP and ca. 195 calBP were identified and interpreted as tsunami surges, the latter ascribed to the catastrophic Lisbon earthquake and the related tsunami.Está investigación ha sido financiada por los proyectos CGL2012-33430 y CGL2013-42847-R, así como por Fondos de la Faculty of Environment and Technology, UWE Bristol (UK). Participa el Grupo de Investigación UCM 910198.Peer reviewe
    corecore