306 research outputs found

    Modular neural network to predict the distribution of nitrate in ground water using on-ground nitrogen loading and recharge data

    Get PDF
    Artificial neural networks have proven to be an attractive mathematical tool to represent complex relationships in many branches of hydrology. Due to this attractive feature, neural networks are increasingly being applied in subsurface modeling where intricate physical processes and lack of detailed field data prevail. In this paper, a methodology using modular neural networks (MNN) is proposed to simulate the nitrate concentrations in an agriculture-dominated aquifer. The methodology relies on geographic information system (GIS) tools in the preparation and processing of the MNN input–output data. The basic premise followed in developing the MNN input–output response patterns is to designate the optimal radius of a specified circular-buffered zone centered by the nitrate receptor so that the input parameters at the upgradient areas correlate with nitrate concentrations in ground water. A three-step approach that integrates the on-ground nitrogen loadings, soil nitrogen dynamics, and fate and transport in ground water is described and the critical parameters to predict nitrate concentration using MNN are selected. The sensitivity of MNN performance to different MNN architecture is assessed. The applicability of MNN is considered for the Sumas-Blaine aquifer of Washington State using two scenarios corresponding to current land use practices and a proposed protection alternative. The results of MNN are further analyzed and compared to those obtained from a physically-based fate and transport model to evaluate the overall applicability of MNN

    Integrated modeling of nitrate contamination of groundwater in agriculture-dominated watersheds

    Get PDF
    This paper presents and implements a framework for modeling the impact of land use practices and protection alternatives on nitrate pollution of groundwater in agricultural watersheds. The framework utilizes the national land cover database (NLCD) of the United State Geological Survey (USGS) grid and a geographic information system (GIS) to account for the spatial distribution of on-ground nitrogen sources and corresponding loadings. The framework employs a soil nitrogen dynamic model to estimate nitrate leaching to groundwater. These estimates were used in developing a groundwater nitrate fate and transport model. The framework considers both point and non-point sources of nitrogen across different land use classes. The methodology was applied for the Sumas–Blaine aquifer of Washington State, US, where heavy dairy industry and berry plantations are concentrated. Simulations were carried out using the developed framework to evaluate the overall impacts of current land use practices and the efficiency of proposed protection alternatives on nitrate pollution in the aquifer

    A microfluidic based biosensor for rapid detection of Salmonella in food products

    Get PDF
    An impedance based microfluidic biosensor for simultaneous and rapid detection of Salmonella serotypes B and D in ready-to-eat (RTE) Turkey matrix has been presented. Detection of Salmonella at a concentration as low as 300 cells/ml with a total detection time of 1 hour has been achieved. The sensor has two sensing regions, with each formed from one interdigitated electrode array (IDE array) consisting of 50 finger pairs. First, Salmonella antibody type B and D were prepared and delivered to the sensor to functionalize each sensing region without causing any cross contamination. Then the RTE Turkey samples spiked with Salmonella types B and D were introduced into the biosensor via the antigen inlet. The response signal resulted from the binding between Salmonella and its specific antibody demonstrated the sensor's ability to detect a single type of pathogen, and multiple pathogens simultaneously. In addition, the biosensor's selectivity was tested using non-specific binding of E. coli O157 and E. coli DH5 Alpha while the IDE array was coated with the Salmonella antibody. The results also showed the sensor is capable to differentiate low concentration of live Salmonella cells from high concentration of dead Salmonella cells, and high concentration of E. coli cells. A detailed study on antibody immobilization that includes antibody concentration, antibody coating time (0.5–3 hours) and use of cross-linker has been performed. The study showed that Salmonella antibody to Salmonella antigen is not a factor of antibody concentration after electrodes were saturated with antibody, while the optimal coating time was found to be 1.5 hours, and the use of cross-linker has improved the signal response by 45–60 percent

    Immunohistochemical evaluation of human epidermal growth factor receptor 2 and estrogen and progesterone receptors in breast carcinoma in Jordan

    Get PDF
    INTRODUCTION: Although breast carcinoma (BC) is the most common malignancy affecting Jordanian females and the affected population in Jordan is younger than that in the West, no information is available on its biological characteristics. Our aims in this study are to evaluate the expression of estrogen receptor (ER) and progesterone receptor (PR) and Her-2/neu overexpression in BC in Jordan, and to compare the expression of these with other prognostic parameters for BC such as histological type, histological grade, tumor size, patients' age, and number of lymph node metastases. METHOD: This is a retrospective study conducted in the Department of Pathology at Jordan University of Science and Technology. A confirmed 91 cases of BC diagnosed in the period 1995 to 1998 were reviewed and graded. We used immunohistochemistry to evaluate the expression of ER, PR, and Her-2. Immunohistochemical findings were correlated with age, tumor size, grade and axillary lymph node status. RESULTS: Her-2 was overexpressed in 24% of the cases. The mean age of Her-2 positive cases was 42 years as opposed to 53 years among Her-2 negative cases (p = 0.0001). Her-2 expression was inversely related to ER and PR expression. Her-2 positive tumors tended to be larger than Her-2 negative tumors with 35% overexpression among T3 tumors as opposed to 22% among T2 tumors (p = 0.13). Her-2 positive cases tended to have higher rates of axillary metastases, but this did not reach statistical significance. ER and PR positive cases were seen in older patients with smaller tumor sizes. CONCLUSION: Her-2 overexpression was seen in 24% of BC affecting Jordanian females. Her-2 overexpression was associated with young age at presentation, larger tumor size, and was inversely related to ER and PR expression. One-fifth of the carcinomas were Her-2 positive and ER negative. This group appears to represent an aggressive form of BC presenting at a young age with large primary tumors and a high rate of four or more axillary lymph node metastases

    The role of DNA methylation in ageing and cancer

    Get PDF
    This article has been accepted for publication and will appear in a revised form, subsequent to peer review and/or editorial input by Cambridge University Press, in Proceedings of the Nutrition Society published by Cambridge University Press. Copyright Cambridge University Press.The aim of the present review paper is to survey the literature related to DNA methylation, and its association with cancer and ageing. The review will outline the key factors, including diet, which modulate DNA methylation. Our rationale for conducting this review is that ageing and diseases, including cancer, are often accompanied by aberrant DNA methylation, a key epigenetic process, which is crucial to the regulation of gene expression. Significantly, it has been observed that with age and certain disease states, DNA methylation status can become disrupted. For instance, a broad array of cancers are associated with promoter-specific hypermethylation and concomitant gene silencing. This review highlights that hypermethylation, and gene silencing, of the EN1 gene promoter, a crucial homeobox gene, has been detected in various forms of cancer. This has led to this region being proposed as a potential biomarker for diseases such as cancer. We conclude the review by describing a recently developed novel electrochemical method that can be used to quantify the level of methylation within the EN1 promoter and emphasise the growing trend in the use of electrochemical techniques for the detection of aberrant DNA methylation

    Trispecific antibody targeting HIV-1 and T cells activates and eliminates latently-infected cells in HIV/SHIV infections.

    Get PDF
    Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4 <sup>+</sup> and CD8 <sup>+</sup> T cells. Co-culturing CD4 <sup>+</sup> with autologous CD8 <sup>+</sup> T cells from ART-suppressed HIV <sup>+</sup> donors with N6/αCD3-αCD28, results in activation of latently-infected cells and their elimination by activated CD8 <sup>+</sup> T cells. This trispecific antibody mediates CD4 <sup>+</sup> and CD8 <sup>+</sup> T-cell activation in non-human primates and is well tolerated in vivo. This HIV-directed antibody therefore merits further development as a potential intervention for the eradication of latent HIV infection

    A metamaterial absorber for the terahertz regime: Design, fabrication and characterization

    Full text link
    We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and magnetic permeability. An experimental absorptivity of 70% at 1.3 terahertz is demonstrated. We utilize only a single unit cell in the propagation direction, thus achieving an absorption coefficient α\alpha = 2000 cm1^{-1}. These metamaterials are promising candidates as absorbing elements for thermally based THz imaging, due to their relatively low volume, low density, and narrow band response
    corecore