10 research outputs found

    Photoluminescence Intensity Enhancement in Tin Halide Perovskites

    Get PDF
    The prevalence of background hole doping in tin halide perovskites usually dominates their recombination dynamics. The addition of excess Sn halide source to the precursor solution is the most frequently used approach to reduce the hole doping and reveals photo-carrier dynamics related to defects activity. This study presents an experimental and theoretical investigation on defects under light irradiation in tin halide perovskites by combining measurements of photoluminescence with first principles computational modeling. It finds that tin perovskite thin films prepared with an excess of Sn halide sources exhibit an enhancement of the photoluminescence intensity over time under continuous excitation in inert atmosphere. The authors propose a model in which light irradiation promotes the annihilation of VSn2−/Sni2+ Frenkel pairs, reducing the deep carrier trapping centers associated with such defect and increasing the radiative recombination. Importantly, these observations can be traced in the open-circuit voltage dynamics of tin-based halide perovskite solar cells, implying the relevance of controlling the Sn photochemistry to stabilize tin perovskite devices

    Effect of electronic doping and traps on carrier dynamics in tin halide perovskites

    Get PDF
    Tin halide perovskites have recently emerged as promising materials for low band gap solar cells. Much effort has been invested on controlling the limiting factors responsible for poor device efficiencies, namely self-p-doping and tin oxidation. Both phenomena are related to the presence of defects; however, full understanding of their implications in the optoelectronic properties of the material is still missing. We provide a comprehensive picture of the competing radiative and non-radiative recombination processes in tin-based perovskite thin films to establish the interplay between doping and trapping by combining photoluminescence measurements with trapped-carrier dynamic simulations and first-principles calculations. We show that pristine Sn perovskites, i.e. sample processed with commercially available SnI2 used as received, exhibit extremely high radiative efficiency due to electronic doping which boosts the radiative band-to-band recombination. Contrarily, thin films where Sn4+ species are intentionally introduced show drastically reduced radiative lifetime and efficiency due to a dominance of Auger recombination at all excitation densities when the material is highly doped. The introduction of SnF2 reduces the doping and passivates Sn4+ trap states but conversely introduces additional non-radiative decay channels in the bulk that fundamentally limit the radiative efficiency. Overall, we provide a qualitative model that takes into account different types of traps present in tin-perovskite thin films and show how doping and defects can affect the optoelectronic properties

    Variation in postoperative outcomes of patients with intracranial tumors: insights from a prospective international cohort study during the COVID-19 pandemic

    Get PDF
    Background: This study assessed the international variation in surgical neuro-oncology practice and 30-day outcomes of patients who had surgery for an intracranial tumor during the COVID-19 pandemic. Methods: We prospectively included adults aged ≄18 years who underwent surgery for a malignant or benign intracranial tumor across 55 international hospitals from 26 countries. Each participating hospital recorded cases for 3 consecutive months from the start of the pandemic. We categorized patients’ location by World Bank income groups (high [HIC], upper-middle [UMIC], and low- and lower-middle [LLMIC]). Main outcomes were a change from routine management, SARS-CoV-2 infection, and 30-day mortality. We used a Bayesian multilevel logistic regression stratified by hospitals and adjusted for key confounders to estimate the association between income groups and mortality. Results: Among 1016 patients, the number of patients in each income group was 765 (75.3%) in HIC, 142 (14.0%) in UMIC, and 109 (10.7%) in LLMIC. The management of 200 (19.8%) patients changed from usual care, most commonly delayed surgery. Within 30 days after surgery, 14 (1.4%) patients had a COVID-19 diagnosis and 39 (3.8%) patients died. In the multivariable model, LLMIC was associated with increased mortality (odds ratio 2.83, 95% credible interval 1.37–5.74) compared to HIC. Conclusions: The first wave of the pandemic had a significant impact on surgical decision-making. While the incidence of SARS-CoV-2 infection within 30 days after surgery was low, there was a disparity in mortality between countries and this warrants further examination to identify any modifiable factors

    <i>Oroxylum indicum</i> Vent Root Bark Extract Inhibits the Proliferation of Cancer Cells and Induce Apoptotic Cell Death

    No full text
    Oroxylum indicum Vent is a medium-sized deciduous tree that belongs to the family Bignoniaceae. The roots of this tree are used as one of the ten ingredients to prepare the Dasamula formulation in the Ayurvedic system of medicine in India. Although traditional uses are attributed to the medicinal plant, there are limited scientific data on its potential. The present study thus analyzed the cytotoxic and apoptotic potential of the plant against different cancer cells. MTT assay was used to determine cytotoxicity using HeLa, HCT 15, and MDA-MB-231 cells, with the IC50 values, revealed at concentrations of 92.43, 133.0, and 112.84 ”g/mL respectively. However, the extract was less toxic to non-cancer cells. HeLa cells further treated with OIM were subjected to flow cytometric analysis for studying the cell cycle stages. When untreated cells at G1 phase were found at a relative percentage of 71.9%, it increased to 79.3 and 86% with OIM treatment at concentrations of 50 and 100 ”g/mL; cells in the S phase decreased from 10.3 to 8.2 and 7.5%, concluding the arrest of the cell cycle at G1 phase. With further study of apoptotic morphology with dual acridine orange–ethidium bromide staining and Annexin–Hoechst staining, cells at early and late apoptotic stages were observed with OIM treatment at 100 ”g/mL concentration. Although such effects were noticed with OIM treatment, it could not be concluded that the extract had remarkable anti-proliferative effects, since the small changes noticed in cell cycle arrest and apoptotic induction were attained at a high concentration of OIM 100 ”g/mL. The biological activities of plants and their extracts are attributed to the presence of multifarious compounds present in them. LC-MS Q-TOF analysis confirmed the presence of biochanin A and baicalein in OIM. HPLC-based quantification of baicalein and chrysin was shown to be 3.36 and 1.11 mg/gram dry weight. To conclude, the above results suggest that the root bark of O. indicum has a broad spectrum of biological activities, including anticancer and apoptotic properties

    Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of <i>Artemisia nilagirica</i> (C.B. Clarke) Pamp

    No full text
    Plants have been employed in therapeutic applications against various infectious and chronic diseases from ancient times. Various traditional medicines and folk systems have utilized numerous plants and plant products, which act as sources of drug candidates for modern medicine. Artemisia is a genus of the Asteraceae family with more than 500 species; however, many of these species are less explored for their biological efficacy, and several others are lacking scientific explanations for their uses. Artemisia nilagirica is a plant that is widely found in the Western Ghats, Kerala, India and is a prominent member of the genus. In the current study, the phytochemical composition and the antioxidant, enzyme-inhibitory, anti-inflammatory, and anticancer activities were examined. The results indicated that the ethanol extract of A. nilagirica indicated in vitro DPPH scavenging (23.12 ± 1.28 ”g/mL), ABTS scavenging (27.44 ± 1.88 ”g/mL), H2O2 scavenging (12.92 ± 1.05 ”g/mL), and FRAP (5.42 ± 0.19 ”g/mL). The anti-inflammatory effect was also noticed in the Raw 264.7 macrophages, where pretreatment with the extract reduced the LPS-stimulated production of cytokines (p A. nilagirica was also efficient in inhibiting the activities of α-amylase (38.42 ± 2.71 ”g/mL), α-glucosidase (55.31 ± 2.16 ”g/mL), aldose reductase (17.42 ± 0.87 ”g/mL), and sorbitol dehydrogenase (29.57 ± 1.46 ”g/mL). It also induced significant inhibition of proliferation in breast (MCF7 IC50 = 41.79 ± 1.07, MDAMB231 IC50 = 55.37 ± 2.11”g/mL) and colon (49.57 ± 1.46 ”g/mL) cancer cells. The results of the phytochemical screening indicated a higher level of polyphenols and flavonoids in the extract and the LCMS analysis revealed the presence of various bioactive constituents including artemisinin

    Chemical Composition and Biological Activities of the Leaf Essential Oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia

    No full text
    Curcuma species are widely used as a food additive and also in various medicinal purposes. The plant is a rich source of essential oil and is predominantly extracted from the rhizomes. On the other hand, the leaves of the plants are usually considered as an agrowaste. The valorization of these Curcuma leaf wastes into essential oils is becoming accepted globally. In the present study, we aim to extract essential oils from the leaves of Curcuma longa (LEO), C. aromatica (REO), and C. anguistifolia (NEO). The chemical composition of these essential oils was analyzed by GC-MS. Free radical scavenging properties were evaluated against the radical sources, including DPPH, ABTS, and hydrogen peroxide. The antibacterial activity was assessed by the disc diffusion method and Minimum inhibitory concentration analysis against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica) bacteria. Results identified the compounds &alpha;-phellandrene, 2-carene, and eucalyptol as predominant in LEO. The REO was predominated by camphor, 2-bornanone, and curdione. The main components detected in NEO were eucalyptol, curzerenone, &alpha;-lemenone, longiverbenone, and &alpha;-curcumene. Antioxidant properties were higher in the LEO with IC50 values of 8.62 &plusmn; 0.18, 9.21 &plusmn; 0.29, and 4.35 &plusmn; 0.16 &mu;g/mL, against DPPH, ABTS, and hydrogen peroxide radicals. The cytotoxic activity was also evident against breast cancer cell lines MCF-7 and MDA-MB-231 cells; the LEO was found to be the most active against these two cell lines (IC50 values of 40.74 &plusmn; 2.19 and 45.17 &plusmn; 2.36 &mu;g/mL). Likewise, the results indicated a higher antibacterial activity for Curcuma longa essential oil with respective IC50 values (20.6 &plusmn; 0.3, 22.2 &plusmn; 0.3, 20.4 &plusmn; 0.2, and 17.6 &plusmn; 0.2 mm). Hence, the present study confirms the possible utility of leaf agrowastes of different Curcuma spp. as a possible source of essential oils with pharmacological potential

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AimThe SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery.MethodsThis was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin.ResultsOverall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P ConclusionOne in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    corecore