12 research outputs found

    EFFECT OF TEMPERATURE ON OCHRATOXIN A PRODUCTION IN COMMON CEREALS BY ASPERGILLUS SPECIES

    Get PDF
    ABSTRACT Ochratoxin A (OTA) is a naturally occurring fungal metabolite produced by some species of Aspergillus and Penicillium. OTA being nephrotoxic, carcinogenic, hepatotoxic and immunosuppressive imparts many human and animal health hazards. In this study OTA production was observed at different temperatures (5ÂșC, 10ÂșC, 20ÂșC, 30ÂșC and 40ÂșC) in three substrates (corn, rice and wheat) by A. ochraceus and A. sulphureus. These two fungal species were grown on aforementioned substrates for three weeks separately. It was quantified by High Performance Liquid Chromatography (HPLC) using the florescent detector. The samples were considered positive for OTA if the peak was obtained at the retention time of 6.34 minutes. OTA was produced at all studied temperatures and in all substrates but the maximum OTA production was observed (1.87±0.021 ”g/g) at 30ÂșC in corn by the Aspergillus ochraceus where as it was minimum at 5ÂșC in wheat by both species i.e. A. ochraceus (0.19±0.021 ”g/g) and A. sulphureus (0.09±0.046 ”g/g). Our results indicate that production of OTA by both species of fungus A. ochraceus and A. sulphureus depends upon temperature and substrate and the production in cereals was significantly higher than the maximum permitted level in cereals (5ng/g) as described by the European Union regulation commission and other agencies in the world

    A comparison of transgenic rodent mutation and in vivo comet assay responses for 91 chemicals.

    Get PDF
    A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals

    A spatially explicit life cycle inventory of the global textile chain

    Get PDF
    Life cycle analyses (LCA) approaches require adaptation to reflect the increasing delocalization of production to emerging countries. This work addresses this challenge by establishing a country-level, spatially explicit life cycle inventory (LCI). This study comprises three separate dimensions. The first dimension is spatial: processes and emissions are allocated to the country in which they take place and modeled to take into account local factors. Emerging economies China and India are the location of production, the consumption occurs in Germany, an Organisation for Economic Cooperation and Development country. The second dimension is the product level: we consider two distinct textile garments, a cotton T-shirt and a polyester jacket, in order to highlight potential differences in the production and use phases. The third dimension is the inventory composition: we track CO2, SO2, NO (x), and particulates, four major atmospheric pollutants, as well as energy use. This third dimension enriches the analysis of the spatial differentiation (first dimension) and distinct products (second dimension). We describe the textile production and use processes and define a functional unit for a garment. We then model important processes using a hierarchy of preferential data sources. We place special emphasis on the modeling of the principal local energy processes: electricity and transport in emerging countries. The spatially explicit inventory is disaggregated by country of location of the emissions and analyzed according to the dimensions of the study: location, product, and pollutant. The inventory shows striking differences between the two products considered as well as between the different pollutants considered. For the T-shirt, over 70% of the energy use and CO2 emissions occur in the consuming country, whereas for the jacket, more than 70% occur in the producing country. This reversal of proportions is due to differences in the use phase of the garments. For SO2, in contrast, over two thirds of the emissions occur in the country of production for both T-shirt and jacket. The difference in emission patterns between CO2 and SO2 is due to local electricity processes, justifying our emphasis on local energy infrastructure. The complexity of considering differences in location, product, and pollutant is rewarded by a much richer understanding of a global production-consumption chain. The inclusion of two different products in the LCI highlights the importance of the definition of a product's functional unit in the analysis and implications of results. Several use-phase scenarios demonstrate the importance of consumer behavior over equipment efficiency. The spatial emission patterns of the different pollutants allow us to understand the role of various energy infrastructure elements. The emission patterns furthermore inform the debate on the Environmental Kuznets Curve, which applies only to pollutants which can be easily filtered and does not take into account the effects of production displacement. We also discuss the appropriateness and limitations of applying the LCA methodology in a global context, especially in developing countries. Our spatial LCI method yields important insights in the quantity and pattern of emissions due to different product life cycle stages, dependent on the local technology, emphasizing the importance of consumer behavior. From a life cycle perspective, consumer education promoting air-drying and cool washing is more important than efficient appliances. Spatial LCI with country-specific data is a promising method, necessary for the challenges of globalized production-consumption chains. We recommend inventory reporting of final energy forms, such as electricity, and modular LCA databases, which would allow the easy modification of underlying energy infrastructure

    International Pig-a gene mutation assay trial: Evaluation of transferability across fourteen laboratories

    No full text
    Experiments described herein were designed to evaluate the reproducibility and transferability of an in vivo mutation assay based on the enumeration of CD59-negative rat erythrocytes, a phenotype that is indicative of Pig-a gene mutation. Fourteen laboratories participated in this study, where anti-CD59-PE and SYTO 13 dye were used to label leukocyte-depleted blood samples, and the frequency of CD59-negative erythrocytes (RBCCD59-) and CD59-negative reticulocytes (RETCD59-) were determined via flow cytometric analysis. To provide samples with a range of mutant phenotype cell frequencies, male rats were exposed to the prototypical mutagen N-ethyl-N-nitrosourea (ENU) via oral gavage for three consecutive days (Days 1-3). Each laboratory studied 0, 20 and 40 mg ENU/kg/day (n = 5 per group). Three sites also evaluated 4 mg/kg/day. At a minimum, blood samples were collected three times: pre-dosing and on Days 15 and 30. Blood samples were processed according to standardized sample processing and data acquisition protocols, and three endpoints were measured: %reticulocytes, frequency of RETCD59-, and frequency of RBCCD59-. As illustrated by the analysis of technical replicates, the methodology was found to be highly reproducible, as experimental coefficients of variation approached theoretical values. Good transferability was evident from the similar kinetics and magnitude of the responses that were observed among different laboratories. Dose-related increases in the frequency of RETCD59- and RBCCD59- were consistently observed on Day 15. Whereas maximal RETCD59- responses tended to occur by Day 15, peak RBCCD59- responses occurred at approximately Day 45. Elevated mutant phenotype cell frequencies were maintained through the latest time-point studied (Day 90). High concordance correlation coefficients show a remarkable level of agreement between the reference site and the test sites. Collectively, these data demonstrate that with adequate training of personnel, flow cytometric analysis is capable of reliably enumerating mutant phenotype erythrocytes, thereby providing a robust in vivo mutation assay that is readily transferable across laboratories
    corecore