17 research outputs found

    Mont Blanc and Aiguilles Rouges geology of their polymetamorphic basement (external massifs, Westerns Alps, France-Switzerland)

    Get PDF
    Les massifs du Mont Blanc et des Aiguilles Rouges appartiennent aux massifs dits cristallins externes de la chaîne alpine occidentale. Ils sont constitués de roches pré-mésozoïques et dessinent des nappes de socle dans le bâti alpin. Ces massifs ont enregistré une longue histoire géologique comprenant le dépôt de sédiments néoprotérozoïques à cambriens, la mise en place de roches magmatiques basiques et ultrabasiques au paléozoïque inférieur, ainsi que l’intrusion de granitoïdes ordoviciens en contexte de marge active. Ces roches sont considérées appartenir à un ensemble de blocs continentaux originaires de la marge septentrionale du Gondwana et accrétés à la marge sud-européenne après leur détachement du Gondwana et leur dérive vers le nord consécutif à l’ouverture de la Paléotéthys. Cet épisode d’accrétion correspond à l’orogenèse varisque (hercynienne), bien documentée dans les massifs du Mont Blanc et des Aiguilles Rouges, par une évolution tectono-métamorphique polyphasée essentiellement carbonifère avec formation de migmatites et intrusion de granitoïdes de types variés. Une érosion active, liée à une forte exhumation, est enregistrée au carbonifère supérieur dans les dépôts détritiques continentaux de bassins d’effondrement de type graben. Ce mémoire présente des cartes géologiques inédites et des suggestions d’excursions dans ces secteurs nouvellement cartographiés. Les lithologies sont abondamment illustrées et décrites en détail du point de vue structural, pétrologique et géochimique. Les analyses chimiques sont fournies en annexe.The Aiguilles Rouges and Mont Blanc external massifs belong to the pre-Mesozoic basement areas of the external domain of the Alps. Before their involvement into the Alpine building (basement nappes) they registered a multiple geological evolution comprising the deposition of Neoproterozoic to Cambrian sediments and emplacement of granitoid and metabasic to ultramafic magmatic rocks of Early Palaeozoic age at the Gondwanan border. After rifting and drifting (formation of Palaeotethys) all rocks underwent polyphase metamorphic and structural transformations during the Variscan orogeny, and were intruded by late Variscan granitoids. The resulting polymetamorphic basement was eroded during formation of Upper Carboniferous sedimentary troughs. New geological maps are presented in this volume, together with structural, petrological and geochemical characteristics of all lithologies. The geochemical data are presented in annexes

    The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites

    Get PDF
    Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post- tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean preceding the general Late Variscan crustal shortening and oroclinal bending

    Ollo de Sapo Cambro-Ordovician volcanics from the Central Iberian basement—A multiphase evolution

    Get PDF
    The Cambro-Ordovician rhyodacitic to dacitic volcanics from the Central Iberian basement, currently known as Ollo de Sapo (toads eye), have been reported as a specific group of felsic porphyritic rocks with blue quartz and large phenocrysts of K- feldspar, in a partly vitreous or fine-grained matrix. Interpreted to form Cambro- Ordovician volcanic domes, they are accompanied by tuffs, ignimbrites and products of reworking in a near-surface environment. The coarse- to fine-grained rocks exhibit rather large K-feldspar phenocrysts, plagioclase and rounded blue quartz, representing former corroded phenocrysts. Their colouration indicates unmixing of TiO2 at around 900°C during cooling from relatively high crystallisation temperatures, indicating their origin at hot lower crustal conditions. We propose at least a two-step evolution (1) starting around 495 Ma in the lower crust of a collapsing cordillera, generating a phenocryst-rich mush and adiabatic melting of the lower crustal protolith to produce the spectacular Ollo de Sapo porphyrites, before (2) magma ascent and crustal extension leading to a different thermal regime around 483 Ma

    Organization of pre-Variscan basement areas at the north-Gondwanan margin

    Get PDF
    Pre-Variscan basement elements of Central Europe appear in polymetamorphic domains juxtaposed through Variscan and/or Alpine tectonic events. Consequently, nomenclatures and zonations applied to Variscan and Alpine structures, respectively, cannot be valid for pre-Variscan structures. Comparing pre-Variscan relics hidden in the Variscan basement areas of Central Europe, the Alps included, large parallels between the evolution of basement areas of future Avalonia and its former peri- Gondwanan eastern prolongations (e.g. Cadomia, Intra-Alpine Terrane) become evident. Their plate-tectonic evolution from the Late Proterozoic to the Late Ordovician is interpreted as a continuous Gondwana-directed evolution. Cadomian basement, late Cadomian granitoids, late Proterozoic detrital sediments and active margin settings characterize the pre-Cambrian evolution of most of the Gondwana-derived microcontinental pieces. Also the Rheic ocean, separating Avalonia from Gondwana, should have had, at its early stages, a lateral continuation in the former eastern prolongation of peri-Gondwanan microcontinents (e.g. Cadomia, Intra-Alpine Terrane). Subduction of oceanic ridge (Proto-Tethys) triggered the break-off of Avalonia, whereas in the eastern prolongation, the presence of the ridge may have triggered the amalgamation of volcanic arcs and continental ribbons with Gondwana (Ordovician orogenic event). Renewed Gondwana-directed subduction led to the opening of Palaeo-Tethys

    Discovery of Ordovician–Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif

    Get PDF
    The pre-Mesozoic, mainly Variscan metamorphic basement of the Col de Bérard area (Aiguilles Rouges Massif, External domain) consists of paragneisses and micaschists together with various orthogneisses and metabasites. Monazite in metapelites was analysed by the electron microprobe (EMPA-CHIME) age dating method. The monazites in garnet micaschists are dominantly of Variscan age (330–300 Ma). Garnet in these rocks displays well developed growth zonations in Fe–Mg–Ca–Mn and crystallized at maximal temperatures of 670°C/7 kbar to the west and 600°C/7–8 kbar to the east. In consequence the monazite is interpreted to date a slightly pressure-dominated Variscan amphibolite-facies evolution. In mylonitic garnet gneisses, large metamorphic monazite grains of Ordovician–Silurian (~440 Ma) age but also small monazite grains of Variscan (~300 Ma) age were discovered. Garnets in the mylonitic garnet gneisses display high-temperature homogenized Mg-rich profiles in their cores and crystallized near to ~800°C/6 kbar. The Ordovician–Silurian-age monazites can be assigned to a pre-Variscan high-temperature event recorded by the homogenised garnets. These monazite age data confirm Ordovician–Silurian and Devonian–Carboniferous metamorphic cycles which were already reported from other Alpine domains and further regions in the internal Variscides

    Paleozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision

    Get PDF
    The well-known Variscan basement areas of Europe contain relic terranes with a pre- Variscan evolution testifying to their peri-Gondwanan origin (e.g., relics of Neoproterozoic volcanic arcs, and subsequent stages of accretionary wedges, backarc rifting, and spreading). The evolution of these terranes was guided by the diachronous subduction of the proto-Tethys oceanic ridge under different segments of the Gondwana margin. This subduction triggered the emplacement of magmatic bodies and the formation of backarc rifts, some of which became major oceanic realms (Rheic, paleo- Tethys). Consequently, the drifting of Avalonia was followed, after the Silurian and a short Ordovician orogenic event, by the drifting of Armorica and Alpine domains, accompanied by the opening of the paleo-Tethys. The slab rollback of the Rheic ocean is viewed as the major mechanism for the drifting of the European Variscan terranes. This, in turn, generated a large slab pull force responsible for the opening of major rift zones within the passive Eurasian margin. Therefore, the µrst Middle Devonian Variscan orogenic event is viewed as the result of a collision between terranes detached from Gondwana (grouped as the Hun superterrane) and terranes detached from Eurasia. Subsequently, the amalgamated terranes collided with Eurasia in a second Variscan orogenic event in Visean time, accompanied by large-scale lateral escape of major parts of the accreted margin. Final collision of Gondwana with Laurussia did not take place before Late Carboniferous time and was responsible for the Alleghanian orogeny

    Gondwana-derived microcontinents — the constituents of the Variscan and Alpine collisional orogens

    Get PDF
    The European Variscan and Alpine mountain chains are collisional orogens, and are built up of pre-Variscan "building blocks" which, in most cases, originated at the Gondwana margin. Such pre-Variscan elements were part of a pre-Ordovician archipelago-like continental ribbon in the former eastern prolongation of Avalonia, and their present-day distribution resulted from juxtaposition through Variscan and/or Alpine tectonic evolution. The well-known nomenclatures applied to these mountain chains are the mirror of Variscan resp. Alpine organization. It is the aim of this paper to present a terminology taking into account their pre-Variscan evolution at the Gondwana margin. They may contain relics of volcanic islands with pieces of Cadomian crust, relics of volcanic arc settings, and accretionary wedges, which were separated from Gondwana by initial stages of Rheic ocean opening. After a short-lived Ordovician orogenic event and amalgamation of these elements at the Gondwanan margin, the still continuing Gondwana-directed subduction triggered the formation of Ordovician Al-rich granitoids and the latest Ordovician opening of Palaeo-Tethys. An example from the Alps (External Massifs) illustrates the gradual reworking of Gondwana-derived, pre-Variscan elements during the Variscan and Alpine/Tertiary orogenic cycles

    The Variscan evolution in the External massifs of the Alps and place in their Variscan framework

    Get PDF
    In the general discussion on the Variscan evolution of central Europe the pre-Mesozoic basement of the Alps is, in many cases, only included with hesitation. Relatively well-preserved from Alpine metamorphism, the Alpine External massifs can serve as an excellent example of evolution of the Variscan basement, including the earliest Gondwana-derived microcontinents with Cadomian relics. Testifying to the evolution at the Gondwana margin, at least since the Cambrian, such pieces took part in the birth of the Rheic Ocean. After the separation of Avalonia, the remaining Gondwana border was continuously transformed through crustal extension with contemporaneous separation of continental blocks composing future Pangea, but the opening of Palaeotethys had only a reduced significance since the Devonian. The Variscan evolution in the External domain is characterised by an early HP-evolution with subsequent granulitic decompression melts. During Visean crustal shortening, the areas of future formation of migmatites and intrusion of monzodioritic magmas in a general strike-slip regime, were probably in a lower plate situation, whereas the so called monometamorphic areas may have been in an upper plate position of the nappe pile. During the Latest Carboniferous, the emplacement of the youngest granites was associated with the strike-slip faulting and crustal extension at lower crustal levels, whereas, at the surface, detrital sediments accumulated in intramontaneous transtensional basins on a strongly eroded surface. To cite this article: J.R von Raumer et al., C. R. Geoscience 341 (2009). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved

    Das untere Paläozoikum in Iberia - eine plattentektonische Interpretation

    No full text
    10 páginas.[EN] The present-day distribution of the Ossa-Morena, Central Iberian, West Asturian-Leonese, and Cantabrian tectono-metamorphic Zones resulted from the complex Variscan evolution, juxtaposing along the Eurasian margin domains formerly located at the Gondwana margin in Early Palaeozoic times. Characterized by mainly thick detrital Cambrian and/or Ordovician sediments, all four regions with their different sedimentary evolution indicate specific emplacements along the Gondwana margin. The elaboration of tectonic subsidence curves for each region and their comparison during the Cambrian, result in a time-space relationship characterized by the following stages: Late Proterozoic to Early Cambrian Cadomian active margin setting (Ossa-Morena and Central Iberian Zones), potential accretion to Gondwana; since the Early Cambrian extending continental crust, leading to an initial subsidence in the Ossa-Morena Zone and to a strong subsidence in the West Asturian-Leonese Zone lasting until the Late Cambrian, related to the opening of the Prototethys. A new pulse of subsidence is recorded since the Arenigian, during the deposition of the "Armorican Quartzite" in the Central Iberian Zone, which is thought to represent a rim-basin forming behind the shoulder of the opening Rheic Ocean. The moderate subsidence in the Cantabrian Zone could be the expression of its evolution of a hinterland between the two passive margins.[ES] La distribución actual de las Zonas tectonometamórficas Cantábrica, Asturoccidental-Leonesa, Centroibérica y Ossa-Morena es el resultado de una compleja evolución que yuxtapuso, durante la deformación varisca, dominios emplazados en distintos lugares del margen de Gondwana durante el Paleozoico Inferior. La diferente evolución sedimentaria de estas cuatro regiones, caracterizadas principalmente por su potente sedimentación detrítica durante el Cámbrico-Ordovícico, indica un emplazamiento específico para cada una de ellas dentro del margen gondwánico. La reconstrucción de las curvas de subsidencia tectónica de cada zona y su comparación den-tro del marco de la evolución cambro-ordovícica perigondwánica, permite distinguir varias etapas en sus relaciones espacio-temporales. Así, en la primera (Neoproterozoico-Cámbrico inicial), un margen activo sobre corteza de tipo cadomiense se desarrollaba en la periferia de Gondwana (Zonas de Ossa-Morena y Centroibérica). La segunda etapa supuso la extensión de dicha corteza entre el Cámbrico Inferior a Superior, con subsidencia incipiente en Ossa-Morena, y fuerte subsidencia en la Zona Asturoccidental-Leonesa. Finalmente y a partir del Arenigiense, se registra un nuevo pulso subsidente en la Zona Centroibérica, ligado al depósito de la Cuarcita Armoricana, lo que permite interpretarla como una cuenca marginal (rim basin) a espaldas del borde sobreelevado (shoulder) creado en la apertura del Océano Rheico. La subsidencia moderada durante esta época en la Zona Cantábrica puede ser el resultado de su evolución como un traspaís (hinterland) situado entre dos márgenes pasivos.[DE] Die heutige Zonengliederung des Iberischen Massivs in die Südportugiesische, Ossa-Morena, Zentraliberische, Westasturisch-Leonesische und Kantabrische Zone ist Folge einer komplexen variszischen Entwicklung, die verschiedene frühpaläozoische Kontinentaleinheiten des ehemaligen Gondwanarandes am Südrand von Eurasien zusammenführte. Durch eine mächtige detritische Entwicklung während des Kambriums und Ordoviziums charakterisiert, zeigen alle der vier letztgenannten Blöcke unterschiedliche Sedimentationsbedingungen und damit unterschiedliche Ablagerungsbedingungen am Gondwanarand an. Die Sedimentation ist in allen vier Gebieten durch spezifische tektonische Subsidenzkurven charakterisiert, und es lassen sich für die Zeit des Kambriums und Ordoviziums folgende plattentektonische Entwicklungsabschnitte unterscheiden: neoproterozoisch bis frühkambrischer aktiver Plattenrand (Ossa-Morena und Zentraliberische Zonen) und mögliche Akkretion an den Gondwanarand; seit dem Unterkambrium Dehnung der kontinentalen Kruste mit initialer Subsidenz in der OssaMorena Zone, und mit starker Subsidenz im Bereich der Westasturisch-Leonesischen Zone bis zum oberen Kambrium im Zusammenhang mit der Öffnung der Prototethys. Mit der Ablagerung des Armorikanischen Quarzits seit dem Arenig wird in der Zentraliberischen Zone eine neue Subsidenzphase erkennbar, die auf eine ,,Rim-Basin Situation hinter der Riftschulter des sich öffnenden Rheischen Ozeans gedeutet werden kann. Die relativ geringen Subsidenzraten in der Kantabrischen Zone könnten Ausdruck einer Entwicklung zwischen zwei passiven Rändern im Hinterland des Riftsystems sein.Peer reviewe
    corecore