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Ordovician volcanic domes, they are accompanied by tuffs, ignimbrites and products
of reworking in a near-surface environment. The coarse- to fine-grained rocks exhi-
bit rather large K-feldspar phenocrysts, plagioclase and rounded blue quartz, repre-
senting former corroded phenocrysts. Their colouration indicates unmixing of TiO,
at around 900°C during cooling from relatively high crystallisation temperatures,
indicating their origin at hot lower crustal conditions. We propose at least a two-
step evolution (1) starting around 495 Ma in the lower crust of a collapsing cordil-
lera, generating a phenocryst-rich mush and adiabatic melting of the lower crustal
protolith to produce the spectacular Ollo de Sapo porphyrites, before (2) magma

ascent and crustal extension leading to a different thermal regime around 483 Ma.
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1 | INTRODUCTION rocks (Figure 1). Pérez-Estalin and Bea (2004) presented a first

review, and Garcia-Arias, Diez-Montes, Villaseca, and Blanco-Quin-

The initially recognised “lberian Porphyroid Formation” by Lotze tero (2017) reviewed new insights. The corresponding areas were

http

(1945, 1956) had the more popular name Ollo de Sapo (toads eye), initially chosen and studied by Lotze's students (Plogmann, 1973;

given by Hernandez Sampelayo (1922) for Early Palaeozoic augen-
gneisses. Such rocks were identified in the Central Iberian Basement
by Parga Pondal, Matte, and Capdevila (1964) among a large variety
of Ordovician augengneisses and metamorphic rocks, and despite
their striking aspect with blue quartz phenocrysts have not yet been
fully understood. In the search of more detailed information on their
evolution, and inspired by the recent discussions on present-day vol-
canic areas (e.g., Cooper, 2017; Putirka, 2017), we reinterpret the
Ollo de Sapo Early Palaeozoic felsic volcanics that contained very
large K-feldspar phenocrysts (up to 10 cm) and rounded, conspicu-
ously blue quartz prior to their deformation.

Located principally in the so-called “Dominio del Ollo de Sapo”
(Gonzélez Lodeiro, Diez-Montes, & Martinez Catalan, 2004), they

occur across about 600 km within their Cambro-Ordovician host

Riemer, 1963; Schafer, 1969; consult: von Raumer, 2008) at a time
when geology was entirely based on fieldwork. In this paper, we
reconsider the formation of the Ollo de Sapo porphyrites, introduc-

ing some hitherto poorly appreciated original texts from this area.

2 | GEOLOGY AND PALAEOTECTONIC
SETTING

Following Martinez Catalan et al. (2009), the Cambro-Ordovician
Ollo de Sapo volcanic and volcaniclastic series were emplaced along
the northern margin of Gondwana among Cadomian crustal elements
of the Iberian basement and their corresponding contemporaneous

sediments. Being part of the European Variscan orogen, the related
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Iberian Basement areas modified after Martinez Catalan, 2012 with distribution of the Ordovician Ollo de Sapo Porphyroids,
, including the Hiendelaencina (Hi) and Sanabria (Sa) areas. CIZ: Central

Iberian Zone, Cz: Cantabrian Zone, GTMZ: Galicia-Tras os Montes Zone, OMZ: Ossa Morena Zone, OSZ: Ollo de Sapo Zone, SPZ: South
Portuguese Zone, WALZ: West-Asturian-Leonese Zone. Red hatched lines: contours of late Variscan oroclinal bending (Martinez Catalan, 2012)

Variscan nappe stacking and high-grade metamorphic overprint
reached partial melting conditions (Alcock, Martinez Catalan, Arenas,
& Diez Montes, 2009; Ballévre et al., 2014), and the last major trans-
formations coincided with the Late Variscan large-scale oroclinal
bending of the lberian domain (Martinez Cataldn, 2012), strongly
transforming the original contours and framework of the Cambro-
Ordovician volcanic sequence. The latter was dated by lithostrati-
graphic means and through U-Pb age data as Late Cambrian to
(495-480 Ma), distinct
short-lived magmatic events (Bea, Montero, Gonzalez Lodeiro, &
Talavera, 2007; Bea et al, 2010; Diez Montes, 2007; Gutiérrez-
Alonso et al, 2007; Montero, Bea, Gonzalez-Lodeiro, Talavera, &
Whitehouse, 2007; Montero, Talavera, Bea, Lodeiro, & Whitehouse,
2009), inferring different stages of emplacement. In the framework
2010; Stampfli,
Hochard, Vérard, Wilhem, & von Raumer, 2013), the corresponding
plate-tectonic setting of the peri-Gondwanan region defines the
European Variscan blocks, which comprise basement areas like the
Central Iberian domain (Arenas, Martinez Catalan, Abati, & Sanchez-
Martinez, 2007) and the Ossa Morena basement (Sdnchez-Garcia,
Quesada, Bellido, Dunning, & Gonzalez del Tanago, 2008), and

Ordovician and consists of rather

of the opening of the Rheic Ocean (Nance et al.,

represent relics of a former Ediacaran-Cambrian active margin with
its accreted exotic terranes.

Subsidence patterns for both regions (von Raumer & Stampfili,
2008; their figure 4) and the plate-tectonic model (Stampfli et al.,
2013) suggest that the two domains were part of different sectors
of the Gondwana margin. As the Rheic Ocean opened in its more
western part around 490 Ma, represented by the Ossa Morena, the
region began to form the southern passive/transform margin of the
Rheic Ocean. Eastward, the Central Iberian basement remained
under an Ordovician basin-and-range regime generated by the col-
lapsing cordillera, after a supposedly rather thick lower crust, before
the Rheic Ocean opened. This region was the site of major phases
of extension or compression reflecting the variable buoyancy of the
incoming subducting oceanic plate.

Accretion of an intraoceanic arc (Figure 2) and local obduction of
a back-arc (von Raumer, Stampfli, Arenas, & Sanchez Martinez, 2015;
their figure 3) created compressional phases in the mid-Ordovician,
followed by renewed extension after subduction resumed. Ensuing
slab roll-back eventually induced the rapid opening of the Rheic
ocean in the late Ordovician accompanied by the detachment of the
Hunic terrane.
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3 | OLLO DE SAPO—GEOLOGICAL AND
PETROGRAPHICAL OBSERVATIONS

Within this geological framework, the Ollo de Sapo felsic porphyrites
were emplaced in the Lower Ordovician “Capas de Montes” in
which Riemer (1963, 1966) documented a sedimentary contact. The
corresponding sedimentary pile (Figure 3), renamed the Ollo de Sapo
Formation (Gonzalez Lodeiro et al., 2004) with an estimated thick-
ness of 2,000-4,500 m, is mostly composed of coarse-grained sub-
volcanic lithologies. Among the strongly folded Variscan structures,
the Puebla de Sanabria and Hiendelaencina areas have been identi-

fied as loci of the most important outcrop areas:

e Schéfer's (1969) original descriptions from the Hiendelaencina
area identified microgranular to coarse-grained low-grade felsic
porphyrites characterised by a serial growth of K-feldspar phe-
nocrysts from very large (10 cm) to 1 cm size, accompanied by
tiny droplet-like blue quartz (former corroded phenocrysts), and
plagioclase of up to about 1 cm, hosted in a fine-grained ground-
mass. He possibly observed flow structures rather than metamor-
phic deformation (Figure 4) in an assemblage of rhyolithic
ignimbrites, with their cogenetic volcanic products, as well as
postintrusion conglomerates containing abundant grains of blue
quartz.

e Plogmann (1973) described in his doctoral thesis in the Sanabria
area two distinct units (I, ) of coarse-grained augengneiss, the
latter forming a large tongue-shaped body accompanied by lateral
derivative volcanics and shale units. The coarse-grained former
porphyrites display a foliated matrix with large phenocrystals of
K-feldspar (4-8 cm) and up to 1-cm-size bluish rounded quartz
crystals. Generally, abrupt boundaries to other lithologies were
observed, where shaly to sandy layers contain small phenocryst-
bearing tuff intercalations. Microscopic observations of the widely
distributed augengneiss confirm the volcanic origin, with a clear
porphyric texture defining distinct generations of phenocrysts in a
fine-grained matrix. Quartz and plagioclase phenocrysts have
undergone magmatic corrosion (tubular corrosion channels), and
plagioclase appears with a glomerophyric overgrowth. K-feldspar
phenocrysts display chemical growth zones (not analysed) with
contemporaneous inclusion of plagioclase of first generation par-

allel to the growth zones.

In addition, Navidad's (1978) observations from Hiendelaencina
and Sanabria show strong and abrupt changes between microgranu-
lar and coarse-grained porphyrites. Her observed broken quartz
probably represent porphyroclasts.

Diez Montes (2007) identified the rather homogeneous intrusive
pile of rhyodacitic to dacitic volcanics to subvolcanic rocks from
Sanabria as two volcanic dome clusters of about 40 km in diameter
before their Variscan deformation. He illustrates rather large crystals
and patches of irregular blue quartz among idiomorphic K-feldspar

phenocrysts, locally with rapakivi-type overgrowths (Figure 5a,b).

According to Diez Montes (2007), the flanks of the eastern dome
were covered by coarse-grained tuffs with porphyroclasts of quartz,
plagioclase and K-feldspar in a fine-grained matrix. Intercalated lithic-
rich sandstones, locally with graded bedding, indicate depositional
periods during volcanic quietness in a near-surface environment.
Welded ignimbrites and epiclastic units from reworking loose pyro-
clastic materials testify to explosive stages with ash falls and their
reworking products. More massive rhyolites are proposed to repre-

sent conduits for the ignimbrite eruptions.

4 | PETROLOGICAL INFORMATION FROM
PHENOCRYSTS

Schifer (1969), Plogmann (1973) and Navidad (1978) considered the
blue quartz as an essential petrological feature, and both Schifer
(1969) and Navidad (1978) early on discussed the possibility of

nano-size TiO, inclusions causing the blue colour.

4.1 | Temperature estimates

Based on Muiller, van den Kerkhof, Behr, Kronz, and Koch-Miiller
(2009), von Raumer, Bussy, Schaltegger, Schulz, and Stampfli (2013)
suggested that the blue cathodo-luminescence of quartz and, by impli-
cation, the Ollo de Sapo quartz phenocrysts indicate high TiO2 con-
tents, suggesting their crystallisation at high temperatures. Seifert
et al. (2011) finally confirmed in their study on other blue-quartz-bear-
ing granitoid rocks that the blue colour of quartz phenocrysts resulted
from oriented exsolution of minor TiO,-crystallites in the quartz host
that caused “Rayleigh scattering”. Based on Ti-in-quartz thermometry,
these authors estimated primary growth temperatures from core to
rim of about 900-700°C in blue quartz phenocrysts. Given the similar-
ities of the blue quartz of the Ollo de Sapo with the samples studied
by Seifert et al. (2011), we assume similar temperatures. Values given
by Bea et al. (2007) for related Iberian orthogneisses (820°-890°C),
although not in identical rock units, confirm at least comparable tem-
peratures in the country rocks of the region.

Diez Montes (2007) collected further observations on the Ollo
de Sapo quartz crystals and put forward the following essential

information:

e embayments in corroded blue quartz phenocrysts were filled by a
fine-grained uncoloured matrix, possibly altered matrix glass.

e a second colourless generation of smaller quartz phenocrysts

habitus,

completely moulded to a matrix, accompany probably former

tuffs.

with a euherdral whose shape appears locally

We deduce that the first generation of quartz phenocrysts of the
Ollo de Sapo Ordovician porphyrites formed at high temperatures of
around 900°C before cooling to a lower temperature, which resulted

in unmixing of TiO,.
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FIGURE 2 Plate-tectonic reconstruction after Stampfli, von Raumer, and Wilhem (2011) at 461 Ma, showing the location of the Iberian
basement areas along the Gondwana margin in their undeformed lower Palaeozoic distribution, and adjacent geological framework including
Cadomian and Chinese basement domains. Considering Stampfli et al. (2013, their figure 1), the general displacement between different
geological units during Ordovician times cannot be neglected, the Cambro-Ordovician volcanics in question being consequently connected and an
entire part of this intracontinental evolution. The Rheic Ocean, with its western branch (470 Ma) and, in orange, its future eastern branch as zones
of rifting, is indicated. The location of the Central Iberian basement (Clb), brick coloured, is indicated by its detrital zircons (Bea et al., 2010),
contributing directly to the peri-Gondwana palaeogeography (comp. Meinhold, Morton, & Avigad, 2013). If unfolded, the Ollo de Sapo volcanics in
Figure 1 stretch at least 600 km and could be related towards the east (Li) with Cambro-Ordovician volcanics observed from Vendée to
Mouthoumet (Pouclet et al., 2016), identifying a general Late Cambrian European rifting period of a specific sector of the Gondwana active
margin. The general evolution may correspond to the sections presented in von Raumer et al. (2015, their figure 4). Explanation: Major continents:
Av: Avalonia, Ba: Baltica, Gd: Ganderia, NC: North China, Qa: Qaidam Ocean, Qi: Qinling, SC: South China, Er: Erlaping. Brick coloured—Clb:
Central Iberian basement, Li (Central Massif, from Vendée to Mouthoumet); Light brown—HU: Hunic units (Karakum, Kunlun East, Pamir-Jinsha,
Turan); Light Green—Gondwanan Variscan units: All Iberian allochthonous; Arm: Armorica, Ca: West Cantabrian-Leonese zone, Co: Corsica, MC:
French Central Massif, northern part; Li (from Vendée to Mouthoumet), OM: Ossa Morena; Py: Pyrenees; Sa: Sardinia; Sx: Saxothuringian; former
(light green) Gondwanan Variscan units: Au: Austroalpine, Ch: Chamrousse, He external massifs, MD: Moldanubian - Tepla-Barrandian, MM:
Montagne Noire, Maures, Tanneron, From the West-Gondwana margin: Dark green — Br: Brunswick, Mg: Meguma; Me: Moroccan Meseta.
Yellow: BRK: Betics, Rif, Kabylies. Purple hatched line: Palaeotethys breakup

Considering feldspar phenocrysts, Plogmann (1973) and crystallisation of the quartz before cooling and exsolution suppos-

Diez Montes (2007) described rapakivi-type overgrowth of K-feld-
spar phenocrysts (e.g., Figure 5a), representing, after Eklund and
Shebanov (1999), a major break and disequilibrium after magma
mixing during feldspar growth in the temperature range 900-
700°C.

42 | Pressure estimate

The related pressure conditions for the blue quartz are difficult to

constrain, but, following von Raumer et al. (2013), the initial stage of

edly occurred at lower crustal levels at high temperatures. At the
time of the Cadomian orogeny, the Central Iberian basement was
still underlain by a thick crust, which would indicate the possibility
of high pressure formation for the quartz phenocrysts, before the
whole crust was put under crustal extension.

However, the Q-Ab-Or data for the granitoid orthogneisses
(Montero, Talavera, & Bea, 2017; their figure 4b) plot clearly
between the 5 and 2 kbar cotectic lines, suggesting that these melts,
emplaced at around 480 Ma, equilibrated after their ascent to higher
crustal levels.
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5 | ACONCEPTUAL MODEL

Summarising Diez Montes (2007), the Ollo de Sapo volcanics
formed two phenocryst-rich subvolcanic domes that were emplaced
into, and separated by, contemporaneous metapelites and sand-
stones and cooled under a volcanic and volcaniclastic shield. Diez
Montes, Martinez Catalan, and Bellido Mulas (2010) also suggested
that the volcanic and subvolcanic rocks may have built up several
near-surface edifices along a tectonic structure. The mega-K-feld-
spar phenocrysts and large blue quartz crystals of the Ollo de Sapo
porphyrites initially formed early (about 495 Ma) at depth and later
were corroded with corrosion embayments filled by a micro-crystal-
line matrix.

The abundance, size and long residence history during cooling are
reminiscent of models of magma chambers below a caldera, as discussed
by Cooper (2017, figure 3d)forthe Yellowstone Caldera. If the analogy is
applicable, then the Ordovician Ollo de Sapo volcanics (comp. Diez Mon-
tes, 2007) may also have formed a crystal mush that was reactivated after
cooling by recharging magmas in relatively short time intervals. However,
the high temperature indicates early crystallisation of phenocrysts at
lower crustal levels, implying a large distance of ascent towards endoge-
neous growth at near-surface conditions (Diez Montes et al., 2010). In

comm)

order to reconcile the early high-T formation, shallow emplacement and
slow cooling (and TiO,-exsolution), we envisage a transcrustal silicic
magma system (Sparks & Cashman, 2017) in accordance with “possibly
there was an extended history of magmatism in the upper crust spanning
perhaps a few millions of years that may reflect an initial crystallisation
followed by storage at low temperatures—perhaps subsolidus—which
would allow the exsolution to happen, but any particular population of
crystals may only have been held at high temperatures in a liquid-domi-
nated magma body for only a few hundreds or thousands of years”—-
such a model would certainly fit with what we are observing from
feldspar and zircon dating.” (Cooper, written message, related to Cooper,
2017; figure 3c).

It is well understood that Cooper's (2017) residence times of
mush and melts of 100-300 ka (Cooper, 2017; figure 3b) are typi-
cal for single batches of evolved, shallow silicic magma systems,
and these cannot be compared to the Ordovician time-scales dis-
cussed above. These span 20 Ma from when magmatism was initi-
ated at lower crustal levels in Ordovician times over a time period
from 495 to 483 Ma (Montero et al., 2007, 2009) to the emplace-
ment at the Hiendelaencina and Villadepera sites (480 Ma to
474 Ma). However, early intrusions and the magma batch repre-

sented by the older units of the Ollo de Sapo intrusive and
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FIGURE 4 Aspect of Ollo de Sapo type porphyrites at surface
from the Hiendelaencina locality (reproduction of a unique remaining
photodocumentation): original figure 17 from Schafer (1969), blue
quartz not recognisable. Serial-sized K-feldspar phenocrysts, the
largest are surrounded by a clear flow structure expressing the high
viscosity of the magmatic matrix (pencil indicates original magmatic
flow direction)

extrusive suite could have formed as a near-solidus crystal mush
and melt system in a thick collapsing Ordovician cordillera as a
result of a “transcrustal magmatic mush system”. Subsequently,
these magmatic systems where strongly affected by widespread
(basin-and-range type) crustal extension that generated further
melting at higher crustal levels during the Ordovician. Zircons
extracted from the phenocrysts yielded a U-Pb age of 485 + 6 Ma
and a Pb—Pb age of 483 + 3 Ma, which could indicate a multistage
and protracted magma reservoir.

In this conceptual model, the observed range of ages clearly
indicate a multistage magmatic evolution with distinct different
magmatic pulses, possibly generating and emplacing silicic magmas
at distinct crustal levels. The initial stage of lower crustal melting
and generation of the porphyrites then corresponds to a lower
crustal hot zone (Annen, Blundy, & Sparks, 2006), i.e., a lower
crustal crystal mush-like system (Figure 6). Magmas that separated
from this zone ascended and were emplaced as porphyrites
beneath an evolving caldera and represent a subsequent stage,
being influenced by the viscosity of the magmas and the thickness
of the crust. The younger generation of granitoids since 480 Ma
then is strongly influenced by the following stage of crustal exten-
sion. This younger stage (480 Ma to 474 Ma) is also expressed at
the Hiendelaencina site by contemporaneous volcanic events at
the surface, which appear correlated in the more northern-located
West-Asturian-Leonese domain with contemporaneous extensive
acidic ash falls (Gutiérrez-Alonso, Gutiérrez-Marco, Fernandez-
Suarez, Bernardez, & Corfu, 2016; Gutiérrez-Alonso et al., 2007).
During this late phase, Ollo de Sapo type 480 Ma minor por-
phyritic subvolcanic magmatic bodies with tiny blue quartz phe-
nocrysts appear in the Albera massif (Eastern Pyrenées) (Marina
Navidad, written communication).

FIGURE 5 Aspect of Ollo de Sapo type porphyrites from the
Sanabria Region. (a) Coarse-grained porphyrite Ollo de Sapo type
with large K-feldspars, plagioclase and blue quartz. Road from
Mombuey to Fresno de la Carballeda, 1 km from Mombuey (coord
UTM, WGS84, 719.925, 4.655.127), original picture 286-27,
courtesy Diez Montes (Salamanca). (b) Irregular-shaped large blue
quartz clusters and K-feldspar phenocrysts from road Mombuey to
Manzanal de la Infantes, km 4. Coord: UTM, WGS84; 717.795,
4.658. 432. Such irregularly shaped blue quartz may suggest the
presence of pre-magmatic relics from the wall-rock, such as quartz
of conglomeratic origin, or even of quartz veins resisting melting,
and predating their transformation into blue quartz. The faint mm-
sized dark patches are probably restitic bi-rich clusters. (Original
picture 1-30, courtesy of Diez Montes (Salamanca)

6 | PLATE-TECTONIC CONSIDERATION
AND CONCLUSIONS

Bea et al. (2007) and Diez Montes (2007) interpreted the volcanic
activity of the Ollo de Sapo as related to rifting. We follow this
model for the subvolcanic Ollo de Sapo porphyroids in the frame-
work of a basin-and-range collapse of the peri-Gondwana cordillera.
After 480 Ma, the crustal extension would have evolved into an
intracordilleran rifted (volcanic arc?) situation—perhaps even causing
the formation of Ordovician anatectic melts. The late Ordovician ash
falls in the West-Asturian-Leonese domain (Gutiérrez-Alonso et al.,
2016) would indicate the continuation of Ordovician volcanic activ-
ity, probably, as proposed by von Raumer et al. (2015, their figure 3),
accompanying a possible slab detachment and ensuing general col-
lapse of the cordillera at that time, which led to the final opening of
the Rheic Ocean in the Central Iberian sector of the Gondwana mar-
gin.
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FIGURE 6 Central Iberian Cambro-
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proposed genetic framework modified
after Diez Montes et al. (2010, their
figure 8a, early stage of dome), and models
inspired after Cooper (2017) and Sparks
and Cashman (2017). Interpretation of the
Ollo de Sapo porphyritic facies (purely
schematic pattern) as a possible early
subsolidus version of phenocrysts formed
at lower crustal levels and emplacement as
domes with blue quartz and K-feldspar
(around 495 Ma, Montero et al., 2007)
before subsequent melts emplaced around
485 Ma and younger magmatic pulses
arrived

Lower Crust

Additional melting during crustal extension would have produced
the younger granitoids <480 Ma, but formation of intermediate
stages of volcanic to subvolcanic composition at distinct places can-
not be excluded. Field differences between the Hiendelaencina and
Sanabria sites could indicate crystallisation at different crustal levels.

It should be added that rocks comparable to those discussed
above would normally remain unique, as their near-mush preserva-
tion would not survive anatectic melting.

Among the great number of known Ordovician felsic rock assem-
blages from the European Variscides, few examples containing blue
quartz are known (von Raumer et al., 2013), but the existence of
extremely large K-feldspar phenocrysts themselves would not justify
identifying such rocks automatically as Ollo de Sapo type, which
would lead to a confusing terminology. Data have to be completed
for a better recognition of the role of early K-feldspars and blue
quartz as phenocrysts, and U-Pb ages that can be directly related to
the formation of the high-TiO, (blue) quartz may help in differentiat-
ing the early high-T deep crustal history from the later shallow crus-
tal evolution after extension. Finally, it seems obvious that along the
thousands of kilometres of the Gondwana active margin different
plate-tectonic scenarios existed in Cambro-Ordovician times, some

corresponding to the geological settings discussed above.
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