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Discovery of Ordovician-Silurian metamorphic monazite
in garnet metapelites of the Alpine External Aiguilles Rouges

Massif

Bernhard Schulz - Jiirgen F. von Raumer

Abstract The pre-Mesozoic, mainly Variscan metamor-
phic basement of the Col de Bérard area (Aiguilles Rouges
Massif, External domain) consists of paragneisses and
micaschists together with various orthogneisses and
metabasites. Monazite in metapelites was analysed by the
electron microprobe (EMPA-CHIME) age dating method.
The monazites in garnet micaschists are dominantly of
Variscan age (330-300 Ma). Garnet in these rocks displays
well developed growth zonations in Fe-Mg—Ca—Mn and
crystallized at maximal temperatures of 670°C/7 kbar to
the west and 600°C/7-8 kbar to the east. In consequence
the monazite is interpreted to date a slightly pressure-
dominated Variscan amphibolite-facies evolution. In
mylonitic garnet gneisses, large metamorphic monazite
grains of Ordovician—Silurian (~440 Ma) age but also
small monazite grains of Variscan (~300 Ma) age were
discovered. Garnets in the mylonitic garnet gneisses display
high-temperature homogenized Mg-rich profiles in their cores
and crystallized near to ~800°C/6 kbar. The Ordovician—
Silurian-age monazites can be assigned to a pre-Variscan
high-temperature event recorded by the homogenised garnets.
These monazite age data confirm Ordovician—Silurian and
Devonian—Carboniferous metamorphic cycles which were
already reported from other Alpine domains and further
regions in the internal Variscides.

B. Schulz (P<)

TU Bergakademie Freiberg, Institute of Mineralogy,
Brennhausgasse 14, 09596 Freiberg, Germany
e-mail: Bernhard.Schulz@mineral.tu-freiberg.de

J. F. von Raumer
Department of Geosciences, Université de Fribourg,
Chemin du Musée 6, 1700 Fribourg, Switzerland

Keywords Ordovician - Variscan - External Massiv -
Garnet metapelites - EMP monazite age dating -
P-T path - Polyphase metamorphism

1 Introduction

The Aiguilles Rouges Massif, one of the Alpine External
Massifs, is relatively well preserved from Alpine overprint,
attaining only the lowest greenschist facies grade with
formation of stilpnomelane (von Raumer 1969). The pre-
Mesozoic metamorphic basement served as example to
discuss its derivation from the Early Palacozoic Gondwana
margin (von Raumer 1998, von Raumer and Neubauer
1993, von Raumer et al. 2002, 2003). During the earliest
long-lasting evolution, since the Ediacarian to the Ordo-
vician, continental extension and an Ordovician active
margin setting predominated in this area (Stampfli et al.
2002). Apart from reduced sediments, a variety of acid
and mafic magmatic rocks was generated in this period.
During Variscan subduction and nappe stacking, these
series became transformed into high-grade metamorphic
rocks (metapelites and metagreywackes, diopside-marbles,
orthogneisses, garnet-amphibolites), migmatites and rocks
like eclogites, meta-ultrabasites and granulites. The dating
on zircon and monazite had given mainly Carboniferous
(~330-320 Ma) ages (Bussy and von Raumer 1994; von
Raumer et al. 1996, 1999; Bussy et al. 2000; von Raumer
and Bussy 2004). Since the findings of Paquette et al.
(1989) also Early Palaeozoic protolith ages of magmatic
rocks came into discussion (von Raumer et al. 2009).

As a considerable part of the Aiguilles Rouges meta-
morphic sequence is composed of metapelites and
paragneisses, the presence of chemically zoned garnet
together with adequate low-variance mineral assemblages
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allowed to reconstruct the pressure—temperature (P-T)-
evolution in some detail (Schulz and von Raumer 1993;
Dobmeier 1998). A local Variscan migmatisation at
~650°C/<4 kbar has been described (Genier et al. 2008).
The occurrence of monazite as an abundant accessory
mineral in micaschists and paragneisses (Spear and Pyle
2002) provides an interesting opportunity for the dating of
multiple thermal events (Finger et al. 2002; Fitzsimons
et al. 2005; Pyle et al. 2005; Finger and Krenn 2007; Krenn
and Finger 2007). In the present study, electron-microprobe
dating of metamorphic monazite resulted in two distinct
groups of ages. These age groups are related to different
metamorphic events which were recorded by metapelitic
assemblages with growth-zoned and high-temperature
homogenised garnet. In this combination a yet merely
presumed Early-Palaecozoic metamorphic event could be
constrained in this part of the Variscan internal zone.

2 Sample description

Typical pre-Mesozic basement is observed between the
Lac Cornu and Col de Bérard regions (Fig. 1). As the

selected garnet-bearing metapelitic samples, already pre-
sented by Schulz and von Raumer (1993) turned out to bear
monazite, they were re-investigated. In detail, garnet
gneisses with a fine-grained foliated matrix surrounding
lens-like microlithons up to 2 cm in length with large
broken garnet porphyroblasts (up to 1.5 cm in diameter)
occur at a new location AR-1890 and at AR-40 (sample E
in Schulz and von Raumer 1993). Detailed mapping
revealed that both samples belong to the same lithological
horizon with variable thickness between 1 and 30 m, which
can be traced over several hundred meters. Due to the
comparably fine-grained foliated matrix contrasting the
large garnet porphyroblasts, this horizon resembles a high
temperature mylonite and is labelled as a mylonitic garnet
gneiss.

The samples AR-68a and AR-1854 (samples C and D in
Schulz and von Raumer 1993) are micaschists from a
western series (Fig. 1b). Both samples are from a distinct
small horizon near to layers of amphibolite. They contain
large euhedral garnet porphyroblasts up to 1.5 cm in
diameter which enclose biotite, muscovite, plagioclase and
quartz. A main foliation labelled S, is underlined by
coarse-grained mica. Sample AR-68a has kyanite enclosed



/ldoc.rero.ch

http

in plagioclase, fibrolitic sillimanite with biotite in S, and
large post-S, aggregates of andalusite, but no staurolite.
Sample AR-1854 bears also these aluminosilicates but has
staurolite which is enclosed in garnet. The samples AR-41
and AR-9 are garnet micaschist and correspond to the
samples A and B in Schulz and von Raumer (1993). They
belong to the eastern part of the sequence (Fig. 1b). The
garnets contain inclusions of mica, plagioclase and quartz
in planar or strongly curved trails S;i indicating a syntec-
tonic crystallization of the porphyroblasts. The garnet
porphyroblasts occur in microlithons with elongated pla-
gioclase and quartz and are surrounded by an anastomosing
main foliation S, underlined by mica. Staurolite is not
enclosed in garnet. Kyanite occurs in distinct porphyro-
blasts. In some S, layers biotite is strongly altered and
replaced by fibrolitic sillimanite.

3 Analytical methods

Quantitative analyses of garnet porphyroblasts and coexisting
biotite and plagioclase, enclosed in garnet or within micro-
structural domains, were performed with an electron
microprobe JEOL JXA8900 RL at the Institut fiir Werk-
stoffwissenschaft at Freiberg/Saxony. The electron beam was
set at 20 kV/20 nA and the common matrix ZAF corrections
were applied. Garnet and plagioclase were analysed along
transgranular profiles. Biotite was characterized by analyses
from cores and rims (Schulz and von Raumer 1993).
Analysis of Th, U and Pb for calculation of monazite
model ages, as well as for Ca, Si, LREE and Y for cor-
rections and evaluation of the mineral chemistry were
carried out on a JEOL JXA 8200 at the Chair of Miner-
alogy, University of Erlangen-Niirnberg (Schulz et al.
2007). The Mal lines of Th and Pb and the M1 lines for U
of a PETH crystal were selected for analysis. Resulting
absolute errors (20) at 20 kV acceleration voltage, 100 nA
beam current, 5 pm beam diameter and counting times
of 320s (Pb), 50 s (U) and 40 s (Th) are typically
0.008-0.012 wt% for Pb, 0.020-0.025 wt% for U and
0.02-0.03 wt% for Th. The lines Lal for La, Y, Ce; Lf1
for Pr, Sm, Nd, Gd and K« for P, Si and Ca were chosen.
Orthophosphates of the Smithsonian Institution were used
as standards for REE analysis (Jarosewich and Boatner
1991; Donovan et al. 2003). Calibration of PbO was carried
out on a vanadinite standard. The U was calibrated on an
appropriate glass standard with 5 wt% UQO,. The age of the
Madmon monazite (Schulz et al. 2007), dated by SHRIMP
at 496 = 9 Ma and numerous Pb-Pb-TIMS monazite
evaporation data (K. Bombach, Freiberg, unpublished
analytical method) at 497 + 2 Ma, was also determined at
503 Ma by the EMP monazite dating routines established
at facilities in Salzburg and BRGM Orléans (Finger and

Helmy 1998; Cocherie et al. 1998). The Madmon contains
ThO, at around 10 wt%, as determined by LA-ICPMS and
by the microprobe at University of Salzburg. Madmon was
used for calibration and offline re-calibration of ThO, as
well as for the control of data. Interference of YLy on the
PbMu line was corrected by linear extrapolation as pro-
posed by Montel et al. (1996). An interference of ThMy on
UMJp was also corrected by using a Th-glass standard.
Interference of a Gd-line on UMJ needs correction when
Gd,03 in monazite is >5 wt%. These parameters matched
the analytical problems discussed in Willams et al. (2006)
in the best way. Representative data are given in Table 1.

4 Monazite ages and mineral chemistry

The EMP monazite dating revealed two distinct genera-
tions of ages in the mylonitic garnet gneisses AR-1890 and
AR-40. An older group of ages around 440 Ma (Late
Ordovician to Early Silurian) has been found in large
matrix monazite grains next to the garnet porphyroblasts
(Fig. 2a) or in monazites enclosed in the garnets (Fig. 2b).
The monazites enclosed in garnet exclusively display the
Ordovician—Silurian ages. In some of the larger matrix grains
allowing several analyses, some marginal analytical points
yielded also Carboniferous ages (Fig. 2c, ). Furthermore the
Carboniferous (labelled as Variscan) ages occur exclusively in
multigrain aggregates of monazites with grain sizes <20
microns, aligned along the mylonitic foliation. In some cases
these small monazites appear as satellites around apatite
(Fig. 2d). In the ThO,* versus PbO diagram (Suzuki et al.
1994), the Ordovician—Silurian and Variscan monazite ages
appear along two distinct isochrons (forced through zero,
Montel et al. 1996). Although the data scatter somewhat
around the isochrons, there are no monazite analyses with
intermediate ages in between these groups (Fig. 3a, b). The
Ordovician—Silurian monazites in matrix and enclosed in
garnet have much higher Y,03 (~3.2 wt%), whereas the
maximal Y,0j; in the Variscan monazites are only 1.5 wt%
(Fig. 4a). Both age groups of monazites have similar contents
of LREE, ThO, and UO, (Fig. 4c, e; Table 1).

Variscan age monazites dominate in the micaschist
samples. Only a few single analyses in the cores of the
matrix grains with sizes of 10-40 pm provided the Ordo-
vician—Silurian ages and are interpreted as metamorphic
relics (sample AR-41). The Variscan ages occur in large
monazites which are elongated along the foliation planes
(Fig. 2). Monazites enclosed in garnet are also of Variscan
age, but appear as slightly older (~330 Ma, sample
AR-41) than monazites (~312 Ma) in the matrix
(Figs. 2g-1, 3d, e). In sample AR-1854 the largest variation
of 0.01-2.7 wt% Y,0O3 can be observed. However, in one
sample (AR-68a), monazite comparably rich in Y,0;
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Fig. 2 Backscattered electron images (BSE) of monazite in mylonitic
garnet gneisses and garnet-bearing micaschists. Numbers are EMP
chemical ages from monazite, calculated as weighted means with 2
sigma error (see text) or from single analyses. Locations of
microprobe analyses are marked. a Large Ordovician monazite grain
in low-strain domain near large garnet porphyroblast in mylonitic
garnet gneiss. b Large Ordovician monazite enclosed in garnet
porphyroblast in mylonitic garnet gneiss. ¢ Large monazite grain in
mylonitic garnet gneiss. Some analyses with Variscan ages reveal

(1.0-2.5 wt%) is dominant. Quite limited variations occur
in samples AR-9 (Y,03 0.5-1.5 wt%) and in sample
AR-41, where all monazites are very low in Y,0;3
(0.01-0.2 wt%, Fig. 4b). The ThO, of the Variscan
monazites in the micaschists display a similar variation
from 2 to 7 wt% as in the mylonitic garnet gneisses,
however the sample AR-1854 is an exception with a wide
range of 2—12 wt% ThO, (Fig. 4e, f).

437+35 Ma (10 o
%1’20 Hm

314+30 Ma (7)

partial recrystallization of the monazite. d Reaction site in mylonitic
garnet gneiss with Variscan monazite satellites around central apatite.
e Ordovician monazite in mylonitic high strain domain in garnet
gneiss. f Homogeneous Variscan monazite elongated parallel to the
foliation in a micaschist. g Variscan monazite enclosed in micaschist
garnet. Monazite may have crystallized along cracks subsequent to
garnet. h Homogeneous Variscan monazite with enclosed apatite.
i Variscan monazite with partial decomposition along the margin.
Decomposed parts give random post-Variscan ages

5 Garnet mineral chemistry and geothermobarometry

Mineral-chemical data from the samples AR-40, AR-68a,
AR-1854, AR-9, AR-41 and also from an eclogitic
amphibolite (Sample AR-39, or sample F, respectively)
is reported in detail in Schulz and von Raumer (1993).
For the study presented here, the data were completed by
analyses of garnets and related phases in the mylonitic
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Fig. 3 Th-U-Pb CHIME
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garnet gneiss sample AR-1890. In the mylonitic garnet
gneisses the compositional profiles are flat in the cores with
up to 30% pyrope and low spessartine and grossular (<2%)
contents. Toward the rims a decrease of pyrope and
increase of grossular is observed (Fig. 5a). Such garnet
zonation profiles are typical of homogenisation of the cores
by diffusion at high temperatures and resorption of the rims
during retrogression (Spear 1993). Biotite along the my-
lonitic foliation has XMg of 0.46-0.51. Plagioclase in the
matrix is zoned with anorthite contents of 22% in the cores
and 33% in the rims, but poorly zoned porphyroblasts
(Anye_»9) are abundant.

The garnets in the micaschist samples (Fig. 5b, c) display
growth zonations with considerable decrease of spessartine
(Mn) contents from cores to rims while pyrope (Mg) increases.
The spessartine contents in garnet cores are quite high (up to
20% in sample AR-41; between 5 and 10% in the other
samples) and decrease toward the rims. The maximal pyrope
contents in the garnet rims are 17%. Zonations are significant
even in large garnet porphyroblasts up to 1.5 cm in diameter

as in samples AR-68a and AR-1854. They reflect growth
zonation trends during increasing temperatures as can be
suggested from the increase of pyrope toward the rims.
Semiquantitatively, increasing and decreasing pressure is
indicated by the grossular zonations (Spear 1993).

The sample AR-39 is an eclogitic amphibolite lens
within the western part of the sequence. A compositional
layering is defined by green amphibole, garnet, clinopyr-
oxene-plagioclase symplectites, plagioclase and quartz.
The xenoblastic garnets (2-3 mm in diameter) enclose
small clinopyroxene, plagioclase, quartz and opaques and
are invaded by green amphibole. Matrix clinopyroxene
occurs with plagioclase in coarse-grained symplectites.
Green amphibole and quartz form a coarse-grained matrix.
The garnets are only slightly zoned with 17-20 mol%
pyrope, 23-26% grossular, 53-55% almandine and <2%
spessartine. Clinopyroxene enclosed by the garnets is
omphacitic (Jd,;_»¢). Jadeite contents of symplectitic
clinopyroxenes are lower (Jdg_;5). Plagioclase is An;s_;7 in
all microstructural positions. Obviously the symplectitic
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clinopyroxenes resulted from a breakdown of high-pres-
sure-stage clinopyroxenes (up to Jd,g) which are still
preserved in garnet inclusions.

In the mylonitic garnet gneisses the cores of homoge-
nised garnets as well as their rims are interpreted to be in
equilibrium with biotite and plagioclase cores and rims in
the matrix. In the micaschist samples, the cores of zoned
garnet and its plagioclase and biotite inclusions, as well as
cores of zoned matrix plagioclase should have crystallised
at early stages of the metamorphic evolution. A late stage
of metamorphism is documented by garnet inner rims,
large biotite which crystallised in the microlithons or in
pressure shadows around the garnet porphyroblast, and the
rims of zoned matrix plagioclase (Tracy 1982; St-Onge
1987; Triboulet and Audren 1985; Schulz 1993). P and T
have been calculated from the mylonitic garnet gneisses
and the garnet micaschists by the garnet-biotite thermom-
eter of Bhattacharya et al. (1992) in combination with
linearised calibration of the garnet-aluminosilicate-plagio-
clase (GASP) and the garnet-muscovite-biotite-plagioclase

(GMBP) barometers, based on an internally consistent ther-
modynamic data set (Holland and Powell 1990), with the
activity models for garnet given by Ganguly et al. (1996) and
for plagioclase as proposed by Powell and Holland (1993).
Tentative calculations by other calibrations (Holdaway 2001),
as mentioned in Wu and Cheng (2006), yielded not substan-
tially different results.

In detail, in the mylonitic garnet gneisses the thermobaro-
metric calculations suggest that the Mg-rich homogenized
garnet cores crystallized at high temperatures near to
800°C/6 kbar. From the zoned garnet rims it was possible to
calculate 650°C/3 kbar (Fig. 6a). The P-T data from both
analysed samples overlap within error. According to the gar-
net zonation trends (Fig. 5b, c¢), from samples AR-1854 and
AR-68a maximal temperatures of 670°C/7 kbar have been
calculated (Fig. 6b). The geothermobarometric re-calcula-
tions from garnet rims and inner parts in samples AR-9 and
AR-41 yielded temperatures from 500 to 600°C between 11
and 6 kbar which are arranged along a prograde-retrograde
P-T path along decreasing pressures (Fig. 6¢).
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Fig. 5 a—c Garnet zonations in almandine (Alm-50, due to scale),
grossular (Grs), pyrope (Prp) and spessartine (Sps) components.
Single analyses used for pressure and temperature calculations in
Fig. 6 are marked with numbers. Position of biotite (Bt) and staurolite
(Sta) enclosed in garnet are marked. a Garnet in mylonitic garnet
gneiss with homogeneous pyrope-rich cores and rims with lower Mg
and variable grossular (Ca). b, ¢ Growth-zoned garnets with
spessartine-rich cores in micaschists

In the eclogitic amphibolite sample AR-39 the P-T
estimates for crystallisation of garnet and enclosed clino-
pyroxenes center around 650°C/13 kbar (Fig. 6b) when
various calibrations of the garnet-clinopyroxene-plagio-
clase geothermo-barometers (Ellis and Green 1979;
Holland 1980; Newton and Perkins 1982; Krogh 1988;

Perchuk 1991; Berman et al. 1995) are applied. A subsequent
stage of the metamorphic evolution has been recorded by the
tschermakitic hornblendes with rather homogeneous compo-
sitions. Application of an updated amphibole endmember
geothermobarometer for assemblages with oligoclase (Zenk
and Schulz 2004) yielded 630°C/6 kbar (Fig. 6b). P-T data
from the eclogitic amphibolite and the micaschists from the
western part of the series can be combined along a nearly
isothermal decompression path with the maximum tempera-
tures at ~670°C/7 kbar. This contrasts maximal temperatures
around ~ 600°C/7-8 kbar along a decompression path in the
micaschists to the east (Fig. 6d).

6 Discussion: an Ordovician-Silurian metamorphic
event?

In micaschists and mylonitic garnet gneisses two age gener-
ations of metamorphic monazite are observed. The older age
group of around 440 Ma (Ordovician—Silurian) occurs dom-
inantly in the mylonitic garnet gneisses. A younger Variscan
age group between 330 Ma (when enclosed in garnet) and
310-300 Ma is observed in all studied samples, but is domi-
nant in the micaschists (Fig. 3). The Variscan EMP-CHIME
Th—U-Pb monazite ages confirm the TIMS U-Pb monazite
ages in micaschists (327 4+ 2 Ma) and leucosomes (320 =+
1 Ma) from the Emosson area (Bussy et al. 2000) and the
337-316 Ma Ar—Ar white mica cooling ages in the western
parts of the massif (Dobmeier 1998).

Geothermobarometry based on mineral zonations of
garnet-bearing assemblages revealed a considerable range
of maximal temperatures, which were passed in the course
of prograde and retrograde P-T paths. Temperatures near
to 800°C are calculated from garnets with homogenised
core profiles in the mylonitic garnet gneisses and are
considered as the possible upper limit. The growth-zoned
garnets in the micaschists crystallized at lower maximal
temperatures, at 670°C to the W and at 600°C to the E.
These marked differences of maximal temperatures
observed in samples situated in close distance led to a
tectonic model of a telescoped Variscan metamorphic
zonation (Schulz and von Raumer 1993). According to this
model, Variscan metamorphic zones with different maxi-
mal temperatures, as observed from the western and eastern
series of metapelites (Figs. 1b, 6b), were juxtaposed in a
strike-slip deformational regime during the uplift.

These marked differences in maximal temperatures
calculated from the garnet-bearing assemblages in the two
rock types are reflected by the mineral chemistry of the
monazites. In the mylonitic garnet gneisses the mole
fraction of the xenotime component is higher (up to 0.08,
X(Y + HREE) calculated as described in Pyle et al. 2001)
in Ordovician—Silurian monazite compared to the Variscan
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Fig. 6 P-T data and P-T path segments from mylonitic garnet
gneisses, micaschists and eclogitic amphibolite of the Col de Bérard
region. Large crosses represent P-T results from the Grt-Bt-
thermometer of Bhattacharya et al. (1992) and the GASP barometer
(see text) applied to metapelite garnet assemblages, enclosing an error
of £50°C and =1 kbar. P-T data was recalculated from mineral-
chemical analyses given in Schulz and von Raumer (1993) and
updated analyses. Stability fields for Ky kyanite, And andalusite, Sil
sillimanite; Cd+ cordierite-in, St+ staurolite-in; St- staurolite-out and
Ms- muscovite-out with univariant reaction lines are given for overall

monazite (up to 0.06). According to the monazite—xeno-
time geothermometers proposed by Heinrich et al. (1997)
and Pyle et al. (2001), this points to maximum formation
temperatures of ~700°C for Ordovician monazites and
~600°C for the Variscan monazites. This is consistent
with geothermobarometry results of garnet growth and its
chemical homogenisation at high-temperatures and sug-
gests that the homogenised garnet formed during a pre-
Variscan event. Growth of pre-Variscan garnet could also
explain the large spread of Y in monazite (Fig. 4a), as
garnet acts as a sink with contrasting yttrium incorporation
capacity at distinct temperatures (Wing et al. 2003; Pyle
et al. 2001). Since Y and the REE are commonly concen-
trated in small accessory minerals and are little mobile in
metamorphic rocks, the observed spread of Y might be also
a matter of local disequilibria (Berger et al. 2005).
Occurrence of polyphase monazite suggest that some of the
Ordovician—Silurian monazite recrystallized during the
Variscan event. It appears likely that some of the large
Ordovician—Silurian monazites were replaced by pseud-
omorphs of allanite and apatite (Finger et al. 1998) during
post-Silurian retrogression. Small monazites appearing as
cluster-like satellites around apatite (Fig. 2d) then crystal-
lized at Variscan times, interpreted as reaction structures. It
appears possible that apatite was replaced by monazite
through fluid-enhanced removal of Ca and F. This would
be the reverse reaction of the apatite corona formation
around monazite described by Finger et al. (1998) and
Finger and Krenn (2007).

Variscan-age monazites are abundant in the micaschist
samples with growth-zoned garnets. Their Y-contents also
display a wide range. In line with the argumentation for the

orientation in P-T coordinates after Spear (1993). a P-T data for
Mg-rich homogenized garnet cores and retrogressive rims in mylon-
itic garnet gneisses. b P-T data from micaschists from the western
series. Clinopyroxene—garnet equilibria from eclogitic amphibolite
mark a high-pressure amphibolite-facies stage. ¢ P-T data from
micaschist series to the E. Note marked different maximal temper-
atures in the micaschist series (E, W). d Interpretative summary of
P-T data and EMP monazite ages in the Col de Bérard Region of the
Aiguilles Rouges Massif. The high pressure stage recorded by the
eclogitic amphibolites is assigned to the Variscan P-T evolution

Ordovician—Silurian monazites, the Variscan monazites
should have crystallized with and subsequent to the max-
imal temperatures recorded by the garnets. When the
growth-zoned micaschist garnets are of Variscan age, this
could explain that they were not affected by a homogeni-
zation at high temperatures. On the other hand, why are
there no relics of high-temperature homogenized garnets in
the micaschists? One possibility may be that the micaschist
series represents a crustal section that was affected by
lower pre-Variscan temperatures as the mylonitic garnet
gneisses. An alternative and additional explanation could
be different grain size, phase abundance and contrasting
strain regimes implying reaction kinetics in mylonitic
garnet gneiss and micaschists. Pre-Variscan garnet under-
went decomposition and recrystallization during the
Variscan pervasive shearing with formation of new folia-
tions. In this frame the mylonitic garnet gneisses represent
a special rock with a significant partition of strain. Ordo-
vician—Silurian garnet and monazite were preserved in
domains with comparably low strains while high strains
were accommodated in the fine-grained mylonitic planes.

7 Comparison to the Early-Palaeozoic framework

The finding of metamorphic monazite grains of Ordovi-
cian—Silurian (~440 Ma) age and their association to high
temperature homogenised garnets within a domain of a
pressure-dominated Variscan metamorphism is examined
within the regional geodynamic frame. In the discussion of
a general model for an Ordovician active margin setting at
the Gondwana margin (Cocks and Torsvik 2002; Stampfli
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and Borel 2004) and the related plate-tectonic evolution
(Stampfli et al. 2002; von Raumer et al. 2002), a renewed
model (Stampfli et al. 2009) distinguished the evolution of
the more western terranes from the more eastern terranes,
the latter including the Alpine basement areas. These areas
underwent an Early Ordovician evolution, also discussed as
orogenic, previous to a passive margin setting, dominated
by crustal extension from the Middle Ordovician at least to
the Silurian (von Raumer and Stampfli 2008).

On the base of U-Pb-zircon age data from the Gotthard
and Tavetsch basement areas of the External domain in the
Alpine orogen, Oberli et al. (1994) and Biino (1995) found
constraints for a Cambro-Ordovician magmatic-metamor-
phic cycle previous to the Variscan metamorphic evolution.
The end of this early orogenic cycle is defined by the
intrusion of the Silurian granitoids in the Gotthard area
(Sergeev and Steiger 1993). Similarly, Schaltegger (1993)
and Schaltegger et al. (2003) detected zircon U-Pb ages of
445 and 456 Ma for the formation of migmatites in the
adjacent basement of the Aar massif. The dating of 450 Ma
old gabbros in the Argentera area (Lombardo et al. 1997;
Rubatto et al. 2001) and Ordovician granitoids in the Mont-
Blanc area (Bussy and von Raumer 1994) provided evi-
dence of a widespread magmatic evolution at lower crustal
levels. It is recalled that also the minimum age data from
meta-eclogites (Paquette et al. 1989) indicate a comparable
time of intrusion of mafic volcanics.

Ordovician—Silurian events are also reported from a
larger Alpine frame, as Frisch and Neubauer (1989) dis-
cussed already the main individualization of basement
areas in the Austroalpine domain (e.g. Noric Terrane) for
that time period. Metabasic rocks in the Graz Paleozoic
(Fritz and Neubauer 1988) give evidence of a period of
crustal extension, presumably in the Silurian. In the Aust-
roalpine basement south of the Tauern an Ordovician
magmatic evolution related to an active margin setting
turned to an environment of extending crust during the late
Ordovician and the Silurian (Schulz et al. 2004). In the
Austroalpine Oetztal-Stubai basement, migmatitic leuco-
somes yielded an EMP monazite average age of 441 + 18
Ma (Klotzli-Chowanetz et al. 1997; Thony et al. 2008),
indicating a Ordovician—Silurian thermal event apart from
the pervasive plutonism in this region.

A polycyclic evolution had been discussed (Romer and
Franz 1998; Zurbriggen et al. 1997) and confirmed (Franz
and Romer 2007) in the basement of the Southern Alps.
This encloses an Ordovician metamorphism prior to the
regional Variscan overprint. However, a correlation of the
pre-Variscan metamorphic events in the Alpine terranes to
the east and the western terranes is not yet feasible: In the
French Massif Central, the basement units display signs of
two metamorphic cycles: Their Silurian—Early Devonian
evolution, labelled also as D;-event, is characterized by
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high and ultra-high pressure metamorphism which has been
dated at 430-390 Ma in various parts and was followed by a
Middle Devonian migmatization. During a second metamor-
phic cycle (D,) at Upper Devonian to Carboniferous times and
under variable lower to upper amphibolite-facies conditions,
basement nappes were stacked in an inverted metamorphic
pile (Faure et al. 2008; Schulz 2009).

In the Aiguilles Rouges Massif it appears likely that the
Ordovician—Silurian metamorphic event was associated to
the preceeding intrusions of numerous granitoids, also
observed in other parts of the External domain. Judging
from the thermobarometric and monazite age data (Fig. 6d)
it has to remain open, whether the Ordovician—Silurian
metamorphism was the direct consequence of exaggerated
heat flow in an Ordovician magmatic arc setting, or if it
resulted from a subsequent crustal extension.
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