44 research outputs found

    Expanding the Coding Potential of Vertebrate Mitochondrial Genomes: Lesson Learned from the Atlantic Cod

    Get PDF
    Vertebrate mitochondrial genomes are highly conserved in structure, gene content, and function. Most sequenced mitochondrial genomes represent bony fishes, and that of the Atlantic cod (Gadus morhua) is the best characterized among the fishes. In addition to the well-characterized 37 canonical gene products encoded by vertebrate mitochondrial genomes, new classes of gene products representing peptides and noncoding RNAs have been discovered. The Atlantic cod encodes at least two peptides (MOTS-c and humanin (HN)), two long noncoding RNAs (lncCR-L and lncCR-H), and a number of small RNAs. Here, we review recent research in the Atlantic cod focusing on putative mitochondrial-derived peptides, the mitochondrial transcriptome, and noncoding RNAs

    The mitochondrial transcriptome of the anglerfish Lophius piscatorius

    Get PDF
    Objective Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-throughput total RNA sequencing. Results We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. piscatorius. Key features include highly abundant mitochondrial ribosomal RNAs (10–100 times that of mRNAs), and that cytochrome oxidase mRNAs appeared > 5 times more abundant than both NADH dehydrogenase and ATPase mRNAs. Unusual for a vertebrate mitochondrial mRNA, the polyadenylated COI mRNA was found to harbor a 75 nucleotide 3′ untranslated region. The mitochondrial genome expressed several non-canonical genes, including the long noncoding RNAs lncCR-H, lncCR-L and lncCOI. Whereas lncCR-H and lncCR-L mapped to opposite strands in a non-overlapping organization within the control region, lncCOI appeared novel among vertebrates. We found lncCOI to be a highly abundant mitochondrial RNA in antisense to the COI mRNA. Finally, we present the coding potential of a humanin-like peptide within the large subunit ribosomal RNA.publishedVersio

    The Mitochondrial Genome of the Sea Anemone Stichodactyla haddoni Reveals Catalytic Introns, Insertion-Like Element, and Unexpected Phylogeny

    Get PDF
    A hallmark of sea anemone mitochondrial genomes (mitogenomes) is the presence of complex catalytic group I introns. Here, we report the complete mitogenome and corresponding transcriptome of the carpet sea anemone Stichodactyla haddoni (family Stichodactylidae). The mitogenome is vertebrate-like in size, organization, and gene content. Two mitochondrial genes encoding NADH dehydrogenase subunit 5 (ND5) and cytochrome c oxidase subunit I (COI) are interrupted with complex group I introns, and one of the introns (ND5-717) harbors two conventional mitochondrial genes (ND1 and ND3) within its sequence. All the mitochondrial genes, including the group I introns, are expressed at the RNA level. Nonconventional and optional mitochondrial genes are present in the mitogenome of S. haddoni. One of these gene codes for a COI-884 intron homing endonuclease and is organized in-frame with the upstream COI exon. The insertion-like orfA is expressed as RNA and translocated in the mitogenome as compared with other sea anemones. Phylogenetic analyses based on complete nucleotide and derived protein sequences indicate that S. haddoni is embedded within the family Actiniidae, a finding that challenges current taxonomy

    Complete loss of the MHC II pathway in an anglerfish, Lophius piscatorius

    Get PDF
    Genome studies in fish provide evidence for the adaptability of the vertebrate immune system, revealing alternative immune strategies. The reported absence of the major compatibility complex (MHC) class II pathway components in certain species of pipefish (genus Syngnathus) and cod-like fishes (order Gadiformes) is of particular interest. The MHC II pathway is responsible for immunization and defence against extracellular threats through the presentation of exogenous peptides to T helper cells. Here, we demonstrate the absence of all genes encoding MHC II components (CD4, CD74 A/B, and both classical and non-classical MHC II ι/β) in the genome of an anglerfish, Lophius piscatorius, indicating loss of the MHC II pathway. By contrast, it has previously been reported that another anglerfish, Antennarius striatus, retains all MHC II genes, placing the loss of MHC II in the Lophius clade to their most recent common ancestor. In the three taxa where MHC II loss has occurred, the gene loss has been restricted to four or five core MHC II components, suggesting that, in teleosts, only these genes have functions that are restricted to the MHC II pathway.publishedVersionPaid Open Acces

    An evolutionary preserved intergenic spacer in gadiform mitogenomes generates a long noncoding RNA

    Get PDF
    BACKGROUND: Vertebrate mitogenomes are economically organized and usually lack intergenic sequences other than the control region. Intergenic spacers located between the tRNA(Thr) and tRNA(Pro) genes (“T-P spacers”) have been observed in several taxa, including gadiform species, but information about their biological roles and putative functions is still lacking. RESULTS: Sequence characterization of the complete European hake Merluccius merluccius mitogenome identified a complex T-P spacer ranging in size from 223–532 bp. Further analyses of 32 gadiform species, representing 8 families and 28 genera, revealed the evolutionary preserved presence of T-P spacers across all taxa. Molecular complexity of the T-P spacers was found to be coherent with the phylogenetic relationships, supporting a common ancestral origin and gain of function during codfish evolution. Intraspecific variation of T-P spacer sequences was assessed in 225 Atlantic cod specimens and revealed 26 haplotypes. Pyrosequencing data representing the mito-transcriptome poly (A) fraction in Atlantic cod identified an abundant H-strand specific long noncoding RNA of about 375 nt. The T-P spacer corresponded to the 5’ part of this transcript, which terminated within the control region in a tail-to-tail configuration with the L-strand specific transcript (the 7S RNA). CONCLUSIONS: The T-P spacer is inferred to be evolutionary preserved in gadiform mitogenomes due to gain of function through a long noncoding RNA. We suggest that the T-P spacer adds stability to the H-strand specific long noncoding RNA by forming stable hairpin structures and additional protein binding sites

    Characterization of mitochondrial mRNAs in codfish reveals unique features compared to mammals

    Get PDF
    Expression and processing of mitochondrial gene transcripts are fundamental to mitochondrial function, but information from early vertebrates like teleost fishes is essentially lacking. We have analyzed mitogenome sequences of ten codfishes (family Gadidae), and provide complete sequences from three new species (Saithe, Pollack and Blue whiting). Characterization of the mitochondrial mRNAs in Saithe and Atlantic cod identified a set of ten poly(A) transcripts, and six UAA stop codons are generated by posttranscriptional polyadenylation. Structural assessment of poly(A) sites is consistent with an RNaseP cleavage activity 5′ of tRNA acceptor-like stems. COI, ND5 and ND6 mRNAs were found to harbor 3′ UTRs with antisense potential extending into neighboring gene regions. While the 3′ UTR of COI mRNA is complementary to the tRNASer (UCN) and highly similar to that detected in human mitochondria, the ND5 and ND6 3′ UTRs appear more heterogenic. Deep sequencing confirms expression of all mitochondrial mRNAs and rRNAs, and provides information about the precise 5′ ends in mature transcripts. Our study supports an overall evolutionary conservation in mitochondrial RNA processing events among vertebrates, but reveals some unique 5′ and 3′ end characteristics in codfish mRNAs with implications to antisense regulation of gene expression

    Elucidating the small regulatory RNA repertoire of the sea anemone Anemonia viridis based on whole genome and small RNA sequencing

    Get PDF
    Cnidarians harbor a variety of small regulatory RNAs that include microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), but detailed information is limited. Here, we report the identification and expression of novel miRNAs and putative piRNAs, as well as their genomic loci, in the symbiotic sea anemone Anemonia viridis. We generated a draft assembly of the A. viridis genome with putative size of 313 Mb that appeared to be composed of about 36% repeats, including known transposable elements. We detected approximately equal fractions of DNA transposons and retrotransposons. Deep sequencing of small RNA libraries constructed from A. viridis adults sampled at a natural CO2 gradient off Vulcano Island, Italy, identified 70 distinct miRNAs. Eight were homologous to previously reported miRNAs in cnidarians, whereas 62 appeared novel. Nine miRNAs were recognized as differentially expressed along the natural seawater pH gradient. We found a highly abundant and diverse population of piRNAs, with a substantial fraction showing ping–pong signatures. We identified nearly 22% putative piRNAs potentially targeting transposable elements within the A. viridis genome. The A. viridis genome appeared similar in size to that of other hexacorals with a very high divergence of transposable elements resembling that of the sea anemone genus Exaiptasia. The genome encodes and expresses a high number of small regulatory RNAs, which include novel miRNAs and piRNAs. Differentially expressed small RNAs along the seawater pH gradient indicated regulatory gene responses to environmental stressors
    corecore