10,414 research outputs found
An investigation into the role of place attachment within extreme sport tourism
Extreme sport participation is a growing phenomenon, both in terms of active and passive consumption. Nevertheless this growth is not mirrored in the academic literature where a clear dearth in research into extreme sport tourism consumption is evident. The conceptualisation of sport tourism is of a unique interaction of three components, namely: activity, people and place, although some argue that the role of place is unclear. Place, within a tourism context, is concerned with the destination within which the tourist activity takes place and is linked to attachment and destination loyalty. As the role of place within sport tourism is ambiguous, it is similarly unclear as to what constitutes attachment within sport tourism consumption. This study in responding to calls for research within the context of extreme sports seeks to identify the factors which influence attachment within an extreme sport tourism context. The study is based on the 2014 Isle of Man TT motorcycle race and contributes to the wider understanding of the components of attachment. From this study we propose the development of a theoretical model for researchers who wish to better understand the role of place within an extreme sport tourism context
Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422
It remains a key challenge to establish the molecular content of different
components of low-mass protostars, like their envelopes and disks, and how this
depends on the evolutionary stage and/or environment of the young stars.
Observations at submillimeter wavelengths provide a direct possibility to study
the chemical composition of low-mass protostars through transitions probing
temperatures up to a few hundred K in the gas surrounding these sources. This
paper presents a large molecular line survey of the deeply embedded
protostellar binary IRAS 16293-2422 from the Submillimeter Array (SMA) -
including images of individual lines down to approximately 1.5-3" (190-380 AU)
resolution. More than 500 individual transitions are identified related to 54
molecular species (including isotopologues) probing temperatures up to about
550 K. Strong chemical differences are found between the two components in the
protostellar system with a separation between, in particular, the sulfur- and
nitrogen-bearing species and oxygen-bearing complex organics. The action of
protostellar outflow on the ambient envelope material is seen in images of CO
and SiO and appear to influence a number of other species, including
(deuterated) water, HDO. The effects of cold gas-phase chemistry is directly
imaged through maps of CO, N2D+ and DCO+, showing enhancements of first DCO+
and subsequently N2D+ in the outer envelope where CO freezes-out on dust
grains.Comment: Accepted for publication in A&A, 30 pages, 22 figure
Exploring the Origins of Earth's Nitrogen: Astronomical Observations of Nitrogen-bearing Organics in Protostellar Environments
It is not known whether the original carriers of Earth's nitrogen were
molecular ices or refractory dust. To investigate this question, we have used
data and results of Herschel observations towards two protostellar sources: the
high-mass hot core of Orion KL, and the low-mass protostar IRAS 16293-2422.
Towards Orion KL, our analysis of the molecular inventory of Crockett et al.
(2014) indicates that HCN is the organic molecule that contains by far the most
nitrogen, carrying of nitrogen-in-organics. Following this
evidence, we explore HCN towards IRAS 16293-2422, which we consider a solar
analog. Towards IRAS 16293-2422, we have reduced and analyzed Herschel spectra
of HCN, and fit these observations against "jump" abundance models of IRAS
16293-2422's protostellar envelope. We find an inner-envelope HCN abundance
and an outer-envelope HCN
abundance . We also find the
sublimation temperature of HCN to be ~K; this
measured enables us to predict an HCN binding energy
~K. Based on a comparison of the HCN/H2O ratio
in these protostars to N/H2O ratios in comets, we find that HCN (and, by
extension, other organics) in these protostars is incapable of providing the
total bulk N/H2O in comets. We suggest that refractory dust, not molecular
ices, was the bulk provider of nitrogen to comets. However, interstellar dust
is not known to have 15N enrichment, while high 15N enrichment is seen in both
nitrogen-bearing ices and in cometary nitrogen. This may indicate that these
15N-enriched ices were an important contributor to the nitrogen in
planetesimals and likely to the Earth.Comment: Accepted to ApJ; 21 pages, 4 figure
The effect of a strong external radiation field on protostellar envelopes in Orion
We discuss the effects of an enhanced interstellar radiation field (ISRF) on
the observables of protostellar cores in the Orion cloud region. Dust radiative
transfer is used to constrain the envelope physical structure by reproducing
SCUBA 850 micron emission. Previously reported 13CO, C17O and H2CO line
observations are reproduced through detailed Monte Carlo line radiative
transfer models. It is found that the 13CO line emission is marginally
optically thick and sensitive to the physical conditions in the outer envelope.
An increased temperature in this region is needed in order to reproduce the
13CO line strengths and it is suggested to be caused by a strong heating from
the exterior, corresponding to an ISRF in Orion 10^3 times stronger than the
"standard" ISRF. The typical temperatures in the outer envelope are higher than
the desorption temperature for CO. The C17O emission is less sensitive to this
increased temperature but rather traces the bulk envelope material. The data
are only fit by a model where CO is depleted, except in the inner and outermost
regions where the temperature increases above 30-40 K. The fact that the
temperatures do not drop below approximately 25 K in any of the envelopes
whereas a significant fraction of CO is frozen-out suggest that the
interstellar radiation field has changed through the evolution of the cores.
The H2CO lines are successfully reproduced in the model of an increased ISRF
with constant abundances of 3-5x10^{-10}.Comment: 11 pages, 10 figures. Accepted for publication in A&
An interferometric study of the low-mass protostar IRAS 16293-2422: small scale organic chemistry
Aims: To investigate the chemical relations between complex organics based on
their spatial distributions and excitation conditions in the low-mass young
stellar objects IRAS 16293-2422 A and B. Methods: Interferometric observations
with the Submillimeter Array have been performed at 5''x3'' resolution
revealing emission lines of HNCO, CH3CN, CH2CO, CH3CHO and C2H5OH. Rotational
temperatures are determined from rotational diagrams when a sufficient number
of lines are detected. Results: Compact emission is detected for all species
studied here. For HNCO and CH3CN it mostly arises from source A, CH2CO and
C2H5OH have comparable strength for both sources and CH3CHO arises exclusively
from source B. HNCO, CH3CN and CH3CHO have rotational temperatures >200 K. The
(u,v)-visibility data reveal that HNCO also has extended cold emission.
Conclusions: The abundances of the molecules studied here are very similar
within factors of a few to those found in high-mass YSOs. Thus the chemistry
between high- and low-mass objects appears to be independent of luminosity and
cloud mass. Bigger abundance differences are seen between the A and B source.
The HNCO abundance relative to CH3OH is ~4 times higher toward A, which may be
due to a higher initial OCN- ice abundances in source A compared to B.
Furthermore, not all oxygen-bearing species are co-existent. The different
spatial behavior of CH2CO and C2H5OH compared with CH3CHO suggests that
hydrogenation reactions on grain-surfaces are not sufficient to explain the
observed gas phase abundances. Selective destruction of CH3CHO may result in
the anti-coincidence of these species in source A. These results illustrate the
power of interferometric compared with single dish data in terms of testing
chemical models.Comment: 11 pages, 15 figures, accepeted by A&
On particles in the Arctic stratosphere
Soon after the discovery of the Antarctic ozone hole it became clear that particles in the polar stratosphere had
an infl uence on the destruction of the ozone layer. Two major types of particles, sulphate aerosols and Polar
Stratospheric Clouds (PSCs), provide the surfaces where fast heterogeneous chemical reactions convert inactive
halogen reservoir species into potentially ozone-destroying radicals. Lidar measurements have been used to classify
the PSCs. Following the Mt. Pinatubo eruption in June 1991 it was found that the Arctic stratosphere was loaded
with aerosols, and that aerosols observed with lidar and ozone observed with ozone sondes displayed a layered
structure, and that the aerosol and ozone contents in the layers frequently appeared to be negatively correlated.
The layered structure was probably due to modulation induced by the dynamics at the edge of the polar vortex.
Lidar observations of the Mt. Pinatubo aerosols were in several cases accompanied by balloon-borne backscatter
soundings, whereby backscatter measurements in three different wavelengths made it possible to obtain information
about the particle sizes. An investigation of the infl uence of synoptic temperature histories on the physical properties
of PSC particles has shown that most of the liquid type 1b particles were observed in the process of an ongoing,
relatively fast, and continuous cooling from temperatures clearly above the nitric acid trihydrate condensation
temperature (TNAT). On the other hand, it appeared that a relatively long period, with a duration of at least 1-2 days,
at temperatures below TNAT provide the conditions which may lead to the production of solid type 1a PSCs
On C*-algebras generated by pairs of q-commuting isometries
We consider the C*-algebras O_2^q and A_2^q generated, respectively, by
isometries s_1, s_2 satisfying the relation s_1^* s_2 = q s_2 s_1^* with |q| <
1 (the deformed Cuntz relation), and by isometries s_1, s_2 satisfying the
relation s_2 s_1 = q s_1 s_2 with |q| = 1. We show that O_2^q is isomorphic to
the Cuntz-Toeplitz C*-algebra O_2^0 for any |q| < 1. We further prove that
A_2^{q_1} is isomorphic to A_2^{q_2} if and only if either q_1 = q_2 or q_1 =
complex conjugate of q_2. In the second part of our paper, we discuss the
complexity of the representation theory of A_2^q. We show that A_2^q is *-wild
for any q in the circle |q| = 1, and hence that A_2^q is not nuclear for any q
in the circle.Comment: 18 pages, LaTeX2e "article" document class; submitted. V2 clarifies
the relationships between the various deformation systems treate
- …