81 research outputs found

    Pre-treatment of blood samples reveal normal blood hypocretin/orexin signal in narcolepsy type 1

    Get PDF
    The hypocretin/orexin system regulates arousal through central nervous system mechanisms and plays an important role in sleep, wakefulness and energy homeostasis. It is unclear whether hypocretin peptides are also present in blood due to difficulties in measuring reliable and reproducible levels of the peptides in blood samples. Lack of hypocretin signalling causes the sleep disorder narcolepsy type 1, and low concentration of cerebrospinal fluid hypocretin-l/oreadn-A peptide is a hallmark of the disease. This measurement has high diagnostic value, but performing a lumbar puncture is not without discomfort and possible complications for the patient. A blood-based test to assess hypocretin-1 deficiency would therefore be of obvious benefit. We here demonstrate that heating plasma or scrum samples to 65 degrees C for 30 min at pH 8 significantly increases hypocretin-1 immunoreactivity enabling stable and reproducible measurement of hypocretin-1 in blood samples. Specificity of the signal was verified by high-performance liquid chromatography and by measuring blood samples from mice lacking hypocretin. Unspecific background signal in the assay was high. Using our method, we show that hypocretin-1 immunoreactivity in blood samples from narcolepsy type 1 patients does not differ from the levels detected in control samples. The data presented here suggest that hypocretin-1 is present in the blood stream in the low picograms per millilitres range and that peripheral hypocretin-1 concentrations are unchanged in narcolepsy type 1

    Effect of GLP-1 Receptor Agonist Treatment on Body weight in Obese Antipsychotic-treated Patients with Schizophrenia:a Randomized, Placebo-controlled Trial Byline

    Get PDF
    AIMS: Schizophrenia is associated with cardiovascular co‐morbidity and a reduced life‐expectancy of up to 20 years. Antipsychotics are dopamine D(2) receptor antagonists and are the standard of medical care in schizophrenia, but the drugs are associated with severe metabolic side effects such as obesity and diabetes. Glucagon‐like peptide‐1 receptor agonists (GLP‐1RAs) are registered for treatment of both obesity and type 2 diabetes. We investigated metabolic effects of the GLP‐1RA, exenatide once‐weekly, in non‐diabetic, antipsychotic‐treated, obese patients with schizophrenia. MATERIAL AND METHODS: Antipsychotic‐treated, obese, non‐diabetic, schizophrenia spectrum patients were randomized to double‐blinded adjunctive treatment with once‐weekly subcutaneous exenatide (n = 23) or placebo (n = 22) injections for 3 months. The primary outcome was loss of body weight after treatment and repeated measures analysis of variance was used as statistical analysis. RESULTS: Between March 2013 and June 2015, 40 patients completed the trial. At baseline, mean body weight was 118.3 ± 16.0 kg in the exenatide group and 111.7 ± 18.0 kg in the placebo group, with no group differences ( P = .23). The exenatide and placebo groups experienced significant ( P = .004), however similar ( P = .98), weight losses of 2.24 ± 3.3 and 2.23 ± 4.4 kg, respectively, after 3 months of treatment. CONCLUSIONS: Treatment with exenatide once‐weekly did not promote weight loss in obese, antipsychotic‐treated patients with schizophrenia compared to placebo. Our results could suggest that the body weight‐lowering effect of GLP‐1RAs involves dopaminergic signaling, but blockade of other receptor systems may also play a role. Nevertheless, anti‐obesity regimens effective in the general population may not be readily implemented in antipsychotic‐treated patients with schizophrenia

    Bone Status in Obese, Non-diabetic, Antipsychotic-Treated Patients, and Effects of the Glucagon-Like Peptide-1 Receptor Agonist Exenatide on Bone Turnover Markers and Bone Mineral Density

    Get PDF
    Background: Low bone mineral density (BMD) may constitute an underestimated comorbidity in schizophrenia patients undergoing long-term antipsychotic treatment. Glucagon-like peptide 1 (GLP-1) receptor agonists are antidiabetic drugs, which may also affect bone turnover.Methods: In planned secondary analyses of a 3 months, double-blind, randomized, placebo-controlled trial (n = 45), we explored effects of the GLP-1 receptor agonist exenatide 2 mg once-weekly (n = 23), or placebo (n = 22) on bone turnover markers (BTMs) and BMD in chronic, obese, antipsychotic-treated patients with schizophrenia spectrum disorder. Baseline BTMs were compared to sex- and age-adjusted reference values from a Danish population cohort, and T- and Z-scores were calculated for BMD.Results: In women (n = 24), all baseline BTM measurements of procollagen type I N-terminal propeptide (PINP) and C-terminal cross-linking telopeptide of type I collagen (CTX) were within reference values. In men (n = 21), 5% displayed lower PINP and 14% displayed lower CTX. One patient displayed BMD Z-score < −2, and 23% of patients (17% of women and 29% of men) displayed −2.5 < T-scores < –1 indicating osteopenia, but none had osteoporosis. After treatment, PINP decreased at trend level significance (P = 0.05), and body mass index BMD increased for L2–L4 (P = 0.016). No changes in bone markers were significant after correction for mean prolactin levels.Conclusions: Sex- and age-adjusted measures of bone status in chronic, obese, antipsychotic-treated patients appeared comparable to the reference population. Subtle changes in bone markers during 3 months exenatide treatment may suggest beneficial effects of GLP-1 receptor agonists on bone status in antipsychotic-treated patients, and further studies should consider the potential influence of prolactin

    Hair cortisol concentration, weight loss maintenance and body weight variability: A prospective study based on data from the european nohow trial

    Get PDF
    Several cross-sectional studies have shown hair cortisol concentration to be associated with adiposity, but the relationship between hair cortisol concentration and longitudinal changes in measures of adiposity are largely unknown. We included 786 adults from the NoHoW trial, who had achieved a successful weight loss of ≥5% and had a body mass index of ≥25 kg/m2 prior to losing weight. Hair cortisol concentration (pg/mg hair) was measured at baseline and after 12 months. Body weight and body fat percentage were measured at baseline, 6-month, 12-month and 18-month visits. Participants weighed themselves at home ≥2 weekly using a Wi-Fi scale for the 18-month study duration, from which body weight variability was estimated using linear and non-linear approaches. Regression models were conducted to examine log hair cortisol concentration and change in log hair cortisol concentration as predictors of changes in body weight, change in body fat percentage and body weight variability. After adjustment for lifestyle and demographic factors, no associations between baseline log hair cortisol concentration and outcome measures were observed. Similar results were seen when analysing the association between 12-month concurrent development in log hair cortisol concentration and outcomes. However, an initial 12-month increase in log hair cortisol concentration was associated with a higher subsequent body weight variability between month 12 and 18, based on deviations from a nonlinear trend (β: 0.02% per unit increase in log hair cortisol concentration [95% CI: 0.00, 0.04]; P =0.016). Our data suggest that an association between hair cortisol concentration and subsequent change in body weight or body fat percentage is absent or marginal, but that an increase in hair cortisol concentration during a 12-month weight loss maintenance effort may predict a slightly higher subsequent 6-months body weight variability. Clinical Trial Registration: ISRCTN registry, identifier ISRCTN88405328. [ABSTRACT FROM AUTHOR]info:eu-repo/semantics/publishedVersio

    Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women

    Get PDF
    The P2X7 receptor gene (P2RX7) is highly polymorphic with five previously described loss-of-function (LOF) single-nucleotide polymorphisms (SNP; c.151+1G>T, c.946G>A, c.1096C>G, c.1513A>C and c.1729T>A) and one gain-of-function SNP (c.489C>T). The purpose of this study was to determine whether the functional P2RX7 SNPs are associated with lumbar spine (LS) bone mineral density (BMD), a key determinant of vertebral fracture risk, in post-menopausal women. We genotyped 506 post-menopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) for the above SNPs. Lumbar spine BMD was measured at baseline and at 6–7 year follow-up. P2RX7 genotyping was performed by homogeneous mass extension. We found association of c.946A (p.Arg307Gln) with lower LS-BMD at baseline (P=0.004, β=−0.12) and follow-up (P=0.002, β=−0.13). Further analysis showed that a combined group of subjects who had LOF SNPs (n=48) had nearly ninefold greater annualised percent change in LS-BMD than subjects who were wild type at the six SNP positions (n=84; rate of loss=−0.94%/year and −0.11%/year, respectively, P=0.0005, unpaired t-test). This is the first report that describes association of the c.946A (p.Arg307Gln) LOF SNP with low LS-BMD, and that other LOF SNPs, which result in reduced or no function of the P2X7 receptor, may contribute to accelerated bone loss. Certain polymorphic variants of P2RX7 may identify women at greater risk of developing osteoporosis

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    P2Y12 Receptor Antagonist, Clopidogrel, Does Not Contribute to Risk of Osteoporotic Fractures in Stroke Patients

    No full text
    Background: Stroke is a leading cause of mortality and morbidity. It is associated with excessive bone loss and risk of fracture in stroke patients is high. The P2Y12R antagonist and platelet inhibitor, clopidogrel, is widely used for secondary prevention after a stroke. However, recent studies have shown that clopidogrel has negative effects on bone and that long-term clopidogrel use is associated with increased fracture risk. The purpose of the current study was therefore to investigate the association of clopidogrel treatment with risk of fractures in stroke and TIA patients.Methods: The study was a cohort study including all subjects who were prescribed clopidogrel between 1996 and 2008 in Denmark (n = 77,503). Age- and gender matched controls (n = 232,510) were randomly selected from the background population. The study end-points were occurrence of stroke or TIA and occurrence of fracture. Clopidogrel use was primary exposure.Results: Ischemic stroke increased risk of fracture by 50% while haemorrhagic stroke and TIA increased the risk by 30%. However, after adjusting for multiple confounders only patients with ischemic stroke and haemorrhagic stroke had increased fracture risk. Clopidogrel use was not associated with increased fracture risk in subjects with ischaemic stroke or TIA. In contrast, after adjusting for multiple confounders clopidogrel treatment was associated with a 10–35% reduced risk of fracture.Conclusion: Patients with stroke have increased risk of osteoporotic fractures, but clopidogrel treatment does not increase fracture risk. In contrast, patients less adherent to the treatment have lower risk of fractures than non-users and patients with high adherence. However, based on the increased risk in stroke patients, clinicians should consider evaluation of bone status of these patients
    corecore