136 research outputs found

    Dissemination of Resistant Escherichia coli Among Wild Birds, Rodents, Flies, and Calves on Dairy Farms

    Get PDF
    Antimicrobial resistance (AMR) in bacteria in the livestock is a growing problem, partly due to inappropriate use of antimicrobial drugs. Antimicrobial use (AMU) occurs in Swedish dairy farming but is restricted to the treatment of sick animals based on prescription by a veterinary practitioner. Despite these strict rules, calves shedding antimicrobial resistant Enterobacteriaceae have been recorded both in dairy farms and in slaughterhouses. Yet, not much is known how these bacteria disseminate into the local environment around dairy farms. In this study, we collected samples from four animal sources (fecal samples from calves, birds and rodents, and whole flies) and two environmental sources (cow manure drains and manure pits). From the samples, Escherichia coli was isolated and antimicrobial susceptibility testing performed. A subset of isolates was whole genome sequenced to evaluate relatedness between sources and genomic determinants such as antimicrobial resistance genes (ARGs) and the presence of plasmids were assessed. We detected both ARGs, mobile genetic elements and low rates of AMR. In particular, we observed four potential instances of bacterial clonal sharing in two different animal sources. This demonstrates resistant E. coli dissemination potential within the dairy farm, between calves and scavenger animals (rodents and flies). AMR dissemination and the zoonotic AMR risk is generally low in countries with low and restricted AMU. However, we show that interspecies dissemination does occur, and in countries that have little to no AMU restrictions this risk could be under-estimated

    Multi-laboratory evaluation of ReaScan TBE IgM rapid test, 2016 to 2017

    Get PDF
    Tick-borne encephalitis (TBE) is a potentially severe neurological disease caused by TBE virus (TBEV). In Europe and Asia, TBEV infection has become a growing public health concern and requires fast and specific detection. Aim: In this observational study, we evaluated a rapid TBE IgM test, ReaScan TBE, for usage in a clinical laboratory setting. Methods: Patient sera found negative or positive for TBEV by serological and/or molecular methods in diagnostic laboratories of five European countries endemic for TBEV (Estonia, Finland, Slovenia, the Netherlands and Sweden) were used to assess the sensitivity and specificity of the test. The patients' diagnoses were based on other commercial or quality assured in-house assays, i.e. each laboratory's conventional routine methods. For specificity analysis, serum samples from patients with infections known to cause problems in serology were employed. These samples tested positive for e.g. Epstein-Barr virus, cytomegalovirus and Anaplasma phagocytophilum, or for flaviviruses other than TBEV, i.e. dengue, Japanese encephalitis, West Nile and Zika viruses. Samples from individuals vaccinated against flaviviruses other than TBEV were also included. Altogether, 172 serum samples from patients with acute TBE and 306 TBE IgM negative samples were analysed. Results: Compared with each laboratory's conventional methods, the tested assay had similar sensitivity and specificity (99.4% and 97.7%, respectively). Samples containing potentially interfering antibodies did not cause specificity problems. Conclusion: Regarding diagnosis of acute TBEV infections, ReaScan TBE offers rapid and convenient complementary IgM detection. If used as a stand-alone, it can provide preliminary results in a laboratory or point of care setting.Peer reviewe

    Health and zoonotic infections of snow leopards Panthera unica in the South Gobi desert of Mongolia

    Get PDF
    Background: Snow leopards, Panthera uncia, are a threatened apex predator, scattered across the mountains of Central and South Asia. Disease threats to wild snow leopards have not been investigated.Methods and Results: Between 2008 and 2015, twenty snow leopards in the South Gobi desert of Mongolia were captured and immobilised for health screening and radio-collaring. Blood samples and external parasites were collected for pathogen analyses using enzyme-linked immunosorbent assay (ELISA), microscopic agglutination test (MAT), and next-generation sequencing (NGS) techniques. The animals showed no clinical signs of disease, however, serum antibodies to significant zoonotic pathogens were detected. These pathogens included, Coxiella burnetii, (25% prevalence), Leptospira spp., (20%), and Toxoplasma gondii (20%). Ticks collected from snow leopards contained potentially zoonotic bacteria from the genera Bacillus, Bacteroides, Campylobacter, Coxiella, Rickettsia, Staphylococcus and Streptococcus.Conclusions: The zoonotic pathogens identified in this study, in the short-term did not appear to cause illness in the snow leopards, but have caused illness in other wild felids. Therefore, surveillance for pathogens should be implemented to monitor for potential longer- term disease impacts on this snow leopard population

    Совершенствование управления краткосрочными активами предприятия (на примере ОАО «СтанкоГомель»)

    Get PDF
    Determining which reference genes have the highest stability, and are therefore appropriate for normalising data, is a crucial step in the design of real-time quantitative PCR (qPCR) gene expression studies. This is particularly warranted in non-model and ecologically important species for which appropriate reference genes are lacking, such as the mallard-a key reservoir of many diseases with relevance for human and livestock health. Previous studies assessing gene expression changes as a consequence of infection in mallards have nearly universally used β-actin and/or GAPDH as reference genes without confirming their suitability as normalisers. The use of reference genes at random, without regard for stability of expression across treatment groups, can result in erroneous interpretation of data. Here, eleven putative reference genes for use in gene expression studies of the mallard were evaluated, across six different tissues, using a low pathogenic avian influenza A virus infection model. Tissue type influenced the selection of reference genes, whereby different genes were stable in blood, spleen, lung, gastrointestinal tract and colon. β-actin and GAPDH generally displayed low stability and are therefore inappropriate reference genes in many cases. The use of different algorithms (GeNorm and NormFinder) affected stability rankings, but for both algorithms it was possible to find a combination of two stable reference genes with which to normalise qPCR data in mallards. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies in ducks. The fact that nearly all previous studies of the influence of pathogen infection on mallard gene expression have used a single, non-validated reference gene is problematic. The toolkit of putative reference genes provided here offers a solid foundation for future studies of gene expression in mallards and other waterfowl

    Тепловой расходомер

    Get PDF
    Полезная модель относится к области измерительной техники, а именно к тепловым устройствам для измерения расхода жидких или газообразных сред, и может быть использована в химической, электронной, энергетической и других отраслях промышленности

    A high-quality genome and comparison of short- versus long-read transcriptome of the palaearctic duck Aythya fuligula (tufted duck)

    Get PDF
    Background: The tufted duck is a non-model organism that experiences high mortality in highly pathogenic avian influenza outbreaks. It belongs to the same bird family (Anatidae) as the mallard, one of the best-studied natural hosts of low-pathogenic avian influenza viruses. Studies in non-model bird species are crucial to disentangle the role of the host response in avian influenza virus infection in the natural reservoir. Such endeavour requires a high-quality genome assembly and transcriptome. Findings: This study presents the first high-quality, chromosome-level reference genome assembly of the tufted duck using the Vertebrate Genomes Project pipeline. We sequenced RNA (complementary DNA) from brain, ileum, lung, ovary, spleen, and testis using Illumina short-read and Pacific Biosciences long-read sequencing platforms, which were used for annotation. We found 34 autosomes plus Z and W sex chromosomes in the curated genome assembly, with 99.6% of the sequence assigned to chromosomes. Functional annotation revealed 14,099 protein-coding genes that generate 111,934 transcripts, which implies a mean of 7.9 isoforms per gene. We also identified 246 small RNA families. Conclusions: This annotated genome contributes to continuing research into the host response in avian influenza virus infections in a natural reservoir. Our findings from a comparison between short-read and long -read reference transcriptomics contribute to a deeper understanding of these competing options. In this study, both technologies complemented each other. We expect this annotation to be a foundation for further comparative and evolutionary genomic studies, including many waterfowl relatives with differing susceptibilities to avian influenza viruses

    Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards

    Get PDF
    Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals

    Tamiflu® - Use It and Lose It?

    No full text
    Influenza A viruses cause seasonal and pandemic outbreaks that range from mild infections to the disastrous Spanish Flu. Resistance to neuraminidase inhibitors (NAIs) is a growing problem as these drugs constitute a vital part of treatment strategies and pandemic preparedness plans worldwide. Oseltamivir (Tamiflu®) is the mostly used NAI. Its active metabolite, oseltamivir carboxylate (OC), is excreted from treated patients and degrades poorly in sewage treatment plants and surface water. Thus, OC can enter aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance and resistance could develop. If NAI resistance is established in influenza viruses circulating among wild birds, the resistance can form part of a virus re-entering the human population either by reassortment or by direct transmission. In this thesis, evidence is presented that OC is present in the waterways during a seasonal influenza outbreak in Japan, a country in which oseltamivir is liberally used. Furthermore, when mallards were infected with an influenza A/H1N1 virus and subjected to low, environmental-like concentrations of OC, resistance developed through acquisition of the well-known resistance mutation H274Y. The influenza infection in the mallards was mainly intestinal, had a rapid onset and was progressing in a longitudinal fashion in the intestine. Finally, influenza A viruses isolated from wild mallards in Sweden and containing resistance-related mutations were examined by a neuraminidase inhibition assay. The viruses did not have a decreased sensitivity to NAIs, but had mutations with a resistance-enhancing potential. Thus, OC is present in the environment and environmental-like concentrations of OC induce resistance in influenza viruses of dabbling ducks. The present resistance situation among wild birds is not well understood but the existence of H274Y among wild birds, though rare, and the spread of the former seasonal A/H1N1 virus containing H274Y among humans indicate that resistance mutations could establish themselves also among wild birds. An oseltamivir-resistant pandemic or a human-adapted highly-pathogenic avian influenza virus are frightening scenarios as oseltamivir is a cornerstone in the defense in those situations. There is a need for further studies, surveillance in wild birds and for a prudent use of antivirals

    Tamiflu® - Use It and Lose It?

    No full text
    Influenza A viruses cause seasonal and pandemic outbreaks that range from mild infections to the disastrous Spanish Flu. Resistance to neuraminidase inhibitors (NAIs) is a growing problem as these drugs constitute a vital part of treatment strategies and pandemic preparedness plans worldwide. Oseltamivir (Tamiflu®) is the mostly used NAI. Its active metabolite, oseltamivir carboxylate (OC), is excreted from treated patients and degrades poorly in sewage treatment plants and surface water. Thus, OC can enter aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance and resistance could develop. If NAI resistance is established in influenza viruses circulating among wild birds, the resistance can form part of a virus re-entering the human population either by reassortment or by direct transmission. In this thesis, evidence is presented that OC is present in the waterways during a seasonal influenza outbreak in Japan, a country in which oseltamivir is liberally used. Furthermore, when mallards were infected with an influenza A/H1N1 virus and subjected to low, environmental-like concentrations of OC, resistance developed through acquisition of the well-known resistance mutation H274Y. The influenza infection in the mallards was mainly intestinal, had a rapid onset and was progressing in a longitudinal fashion in the intestine. Finally, influenza A viruses isolated from wild mallards in Sweden and containing resistance-related mutations were examined by a neuraminidase inhibition assay. The viruses did not have a decreased sensitivity to NAIs, but had mutations with a resistance-enhancing potential. Thus, OC is present in the environment and environmental-like concentrations of OC induce resistance in influenza viruses of dabbling ducks. The present resistance situation among wild birds is not well understood but the existence of H274Y among wild birds, though rare, and the spread of the former seasonal A/H1N1 virus containing H274Y among humans indicate that resistance mutations could establish themselves also among wild birds. An oseltamivir-resistant pandemic or a human-adapted highly-pathogenic avian influenza virus are frightening scenarios as oseltamivir is a cornerstone in the defense in those situations. There is a need for further studies, surveillance in wild birds and for a prudent use of antivirals
    corecore