19 research outputs found

    Immunology

    No full text

    Bioinspired Asymmetric Total Synthesis of Emeriones A–C

    No full text
    We report an asymmetric bioinspired total synthesis of the fungal metabolites emeriones A–C via stereoselective late-stage epoxidation or endoperoxidation of two bicyclo[4.2.0]octadiene diastereomers. The central bicyclic scaffold is synthesized in an 8pi/6pi electrocyclization cascade of a stereodefined (E,E,Z,Z,E)-pentaene, which contains the fully assembled and unprotected side chains of the natural products. The pentaene is constructed convergently through Stille cross-coupling of two similarly complex polyenes. The anti-aldol side chain of the emeriones is made using a Paterson-aldol approach, and the epoxide of the dioxobicyclo[3.1.0] side chain is synthesized via ring-closure onto an oxidized para-methoxyphenyl acetal. Our total synthesis has enabled the revision of the structure of emerione C and the synthesis of a “missing” family member, which we hereby call emerione D. DFT calculations indicate the two methyl groups that reside on the cyclobutene ring are critical for the stereochemical outcome of 8pi/6pi electrocyclization

    Eur. J. Immunol.

    No full text

    Bioinspired Asymmetric Total Synthesis of Emeriones A–C**

    No full text
    We report asymmetric bioinspired total syntheses of the fungal metabolites emeriones A-C via stereoselective oxidations of two bicyclo[4.2.0]octadiene diastereomers. The central bicyclic scaffolds are prepared in an 8π/6π electrocyclization cascade of a stereodefined pentaene, which contains the fully assembled side chains of the emeriones. The anti-aldol side chain is made using a Paterson-aldol addition, and the epoxide of the dioxabicyclo[3.1.0]hexane side chain via ring-closure onto an oxidized acetal. Our work has enabled the structural revision of emerione C, and resulted in the synthesis of a "missing" family member, which we call emerione D. DFT calculations identified two methyl groups that govern torquoselectivity in the 8π/6π cascade

    Immunology

    No full text

    The Double Chooz antineutrino detectors

    Get PDF
    This article describes the setup and performance of the near and far detectors in the Double Chooz experiment. The electron antineutrinos of the Chooz nuclear power plant were measured in two identically designed detectors with different average baselines of about 400 m and 1050 m from the two reactor cores. Over many years of data taking the neutrino signals were extracted from interactions in the detectors with the goal of measuring a fundamental parameter in the context of neutrino oscillation, the mixing angle θ13. The central part of the Double Chooz detectors was a main detector comprising four cylindrical volumes filled with organic liquids. From the inside towards the outside there were volumes containing gadolinium-loaded scintillator, gadolinium-free scintillator, a buffer oil and, optically separated, another liquid scintillator acting as veto system. Above this main detector an additional outer veto system using plastic scintillator strips was installed. The technologies developed in Double Chooz were inspiration for several other antineutrino detectors in the field. The detector design allowed implementation of efficient background rejection techniques including use of pulse shape information provided by the data acquisition system. The Double Chooz detectors featured remarkable stability, in particular for the detected photons, as well as high radiopurity of the detector components
    corecore