16 research outputs found

    Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    Get PDF
    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.Comment: Contact authors: R.H.D. Corbet, M. Kerr, C.C. Cheun

    Investigating the Nature of Late-time High-energy GRB Emission through Joint Fermi/Swift Observations

    Get PDF
    Abstract We use joint observations by the Swift X-ray Telescope (XRT) and the Fermi Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by Fermi LAT. Joint broadband spectral modeling of XRT and LAT data reveals that LAT nondetections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold. By contrast, LAT-detected bursts are best fit by a synchrotron spectrum with a cooling break that lies either between or above the XRT and LAT energy ranges. We speculate that the primary difference between GRBs with LAT afterglow detections and the nondetected population may be in the type of circumstellar environment in which these bursts occur, with late-time LAT detections preferentially selecting GRBs that occur in low wind-like circumburst density profiles. Furthermore, we find no evidence of high-energy emission in the LAT-detected population significantly in excess of the flux expected from the electron synchrotron spectrum fit to the observed X-ray emission. The lack of excess emission at high energies could be due to a shocked external medium in which the energy density in the magnetic field is stronger than or comparable to that of the relativistic electrons behind the shock, precluding the production of a dominant synchrotron self-Compton (SSC) component in the LAT energy range. Alternatively, the peak of the SSC emission could be beyond the 0.1\u2013100 GeV energy range considered for this analysis

    Fermi-LAT Observations of LIGO/Virgo Event GW170817

    Get PDF
    We present the Fermi Large Area Telescope (LAT) observations of the binary neutron star merger event GW170817 and the associated short gamma-ray burst (SGRB) GRB 170817A detected by the Fermi Gamma-ray Burst Monitor. The LAT was entering the South Atlantic Anomaly at the time of the LIGO/Virgo trigger (t GW) and therefore cannot place constraints on the existence of high-energy (E > 100 MeV) emission associated with the moment of binary coalescence. We focus instead on constraining high-energy emission on longer timescales. No candidate electromagnetic counterpart was detected by the LAT on timescales of minutes, hours, or days after the LIGO/Virgo detection. The resulting flux upper bound (at 95% C.L.) from the LAT is 4.5 7 10-10 erg cm-2 s-1 in the 0.1-1 GeV range covering a period from t GW + 1153 s to t GW + 2027 s. At the distance of GRB 170817A, this flux upper bound corresponds to a luminosity upper bound of 9.7 7 1043 erg s-1, which is five orders of magnitude less luminous than the only other LAT SGRB with known redshift, GRB 090510. We also discuss the prospects for LAT detection of electromagnetic counterparts to future gravitational-wave events from Advanced LIGO/Virgo in the context of GW170817/GRB 170817A

    DEVELOPMENT of the MODEL of GALACTIC INTERSTELLAR EMISSION for STANDARD POINT-SOURCE ANALYSIS of FERMI LARGE AREA TELESCOPE DATA

    Get PDF
    Most of the celestial \u3b3 rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20\ub0 and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within \u2dc4\ub0 of the Galactic Center

    Analytical and Numerical Models for Determining Geothermal Energy Potential: A Case Study in India

    No full text
    The energy supply in India is based on coal, whose reserves are present in eastern and central provinces of India. The electricity distribution network cannot rely on the potential hydraulic system that is subject to sharp fluctuations due to the monsoon rains and floods. In recent years, attention has been focused on renewable energies. One of the most attractive options is the exploitation of geothermal reservoirs, especially in northern India. The priority for research of geothermal sources is the Puga valley in Ladakh district in the state of Kashmir, 1,600 km from New Delhi and at an altitude of about 4,400 m. This work presents alternative ways for determining thermal energy exploitation, looking at both analytical and numerical models. After discussing the different approaches, an example of a possible application in India is shown and results are discussed

    SEARCH FOR COSMIC-RAY-INDUCED GAMMA-RAY EMISSION IN GALAXY CLUSTERS

    No full text
    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into \u3b3 rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended \u3b3-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7\u3c3, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R 200, to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the \u3b3-ray flux from individual clusters in our sample

    FERMI LAT STACKING ANALYSIS of SWIFT LOCALIZED GRBs

    Get PDF
    We perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of \u3b3-ray bursts (GRBs) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instrument\u2019s field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a burst\u2019s prompt \u3b3-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swift\u2019s X-ray Telescope at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the burst\u2019s afterglow brightness lend further support to the external forward shock origin of the late-time emission detected by the LAT. These results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing to instrumental threshold effects

    Constraints on the Galactic Population of TEV Pulsar Wind Nebulae Using Fermi Large Area Telescope Observations

    No full text
    Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV gamma-ray emitters. Since launch, the Fermi Large Area Telescope (LAT)identified five high-energy (100Me
    corecore