14 research outputs found

    The Role of Cell Cycle Machinery in Ischemic Neuronal Death

    No full text
    Ischemic stroke occurs as a result of a lack or severe reduction of blood supply to the brain. Presently therapeutic interventions are limited and there is a need to develop new and efficacious stroke treatments. To this end, a great deal of research effort has been devoted to studying the potential molecular mechanisms involved in ischemic neuronal death. Correlative evidence demonstrated a paradoxical activation of the cell cycle machinery in ischemic neurons. The levels and activity of key cell cycle regulators including cyclin D1, Cdk2 and Cdk4 are upregulated following ischemic insults. However, the functional relevance of these various signals following ischemic injury was unclear. Accordingly, the research described in this thesis address the functional relevance of the activation of the cell cycle machinery in ischemic neuronal death. The data indicate that the inhibition of Cdk4 protects neurons from ischemia-induced delayed death, whereas abrogation of Cdk5 activity prevents excitotoxicity-induced damage in vitro and in vivo. Examination of upstream activators of mitotic-Cdks showed that Cdc25A is a critical mediator of delayed ischemic neuronal death. Investigation of the potential molecular mechanism by which cell cycle regulators induced neuronal death revealed perturbations in the levels and activity of key downstream targets of Cdk4. The retinoblastoma protein family members, pRb and p130 are increasingly phosphorylated following ischemic stresses. Importantly, p130 and E2F4 proteins are drastically reduced following ischemic insults. Additionally, E2F1 association with promoters of pro-apoptotic genes are induced while that of E2F4 is reduced. These changes appear to be important determinants in ischemic neuronal death. Cumulatively, the data supports the activation of the cell cycle machinery as a pathogenic signal contributing to ischemic neuronal death. The development of neuroprotectant strategies for stroke has been hampered in part by its complex pathophysiology. Previous research indicated that flavopiridol, a general CDK-inhibitor, is unable to provide sustained neuroprotection beyond one week following cerebral ischemia. The potential benefit of combining flavopiridol with another neuroprotectant, minocycline, was explored. The data indicate that while this approach provided histological protection 10 weeks after insult, the protected neurons are not functional due to progressive dendritic degeneration. This evidence indicates that targeting cell cycle pathways in stroke while important must be combined with other therapeutic modalities to fully treat stroke-induced damage

    Manganese-induced neurotoxicity in cerebellar granule neurons due to perturbation of cell network pathways with potential implications for neurodegenerative disorders

    No full text
    Manganese (Mn) is essential for living organisms, playing an important role in nervous system function. Nevertheless, chronic and/or acute exposure to this metal, especially during early life stages, can lead to neurotoxicity and dementia by unclear mechanisms. Thus, based on previous works of our group with yeast and zebrafish, we hypothesized that the mechanisms mediating manganese-induced neurotoxicity can be associated with the alteration of protein metabolism. These mechanisms may also depend on the chemical speciation of manganese. Therefore, the current study aimed at investigating the mechanisms mediating the toxic effects of manganese in primary cultures of cerebellar granule neurons (CGNs). By exposing cultured CGNs to different chemical species of manganese ([[2-[(dithiocarboxy)amino]ethyl]carbamodithioato]](2-)-kS,kS′]manganese, named maneb (MB), and [[1,2-ethanediylbis[carbamodithioato]](2-)]manganese mixture with [[1,2-ethanediylbis[carbamodithioato]](2-)]zinc, named mancozeb (MZ), and manganese chloride (MnCl2)), and using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, we observed that both MB and MZ induced similar cytotoxicity (LC50 ∼ 7-9 μM), which was higher than that of MnCl2 (LC50 ∼ 27 μM). Subsequently, we applied systems biology approaches, including metallomics, proteomics, gene expression and bioinformatics, and revealed that independent of chemical speciation, for non-cytotoxic concentrations (0.3-3 μM), Mn-induced neurotoxicity in CGNs is associated with metal dyshomeostasis and impaired protein metabolism. In this way, we verified that MB induced more post-translational alterations than MnCl2, which can be a plausible explanation for cytotoxic differences between both chemical species. The metabolism of proteins is one of the most energy consuming cellular processes and its impairment appears to be a key event of some cellular stress processes reported separately in other studies such as cell cycle arrest, energy impairment, cell signaling, excitotoxicity, immune response, potential protein accumulation and apoptosis. Interestingly, we verified that Mn-induced neurotoxicity shares pathways associated with the development of Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, and Parkinson's disease. This has been observed in baker's yeast and zebrafish suggesting that the mode of action of Mn may be evolutionarily conserved.The authors acknowledge FAPESP (14/08990-2, 15/24207-9, 16/00371-7, 16/50483-6), CNPq (71/2013), and the Spanish Ministry of Health (PI 13/1252). The authors thank Roberto Pinto LLorente for technical assistance

    Cofilin-actin rod formation in experimental stroke is attenuated by therapeutic hypothermia and overexpression of the inducible 70 kD inducible heat shock protein (Hsp70)

    No full text
    BACKGROUND AND PURPOSE:Cofilin-actin rods are covalently linked aggregates of cofilin-1 and actin. Under ischemic conditions, these rods have been observed in neuronal dendrites and axons and may contribute to the loss of these processes. Hypothermia (Hypo) and the 70 kD inducible heat shock protein (Hsp70) are both known to improve outcomes after stroke, but the mechanisms are uncertain. Here, we evaluated the effect of these factors on cofilin-actin rod formation in a mouse model of stroke. MATERIALS AND METHODS:Mice were subjected to distal middle cerebral artery occlusion (dMCAO) and treated with Hypo using a paradigm previously shown to be neuroprotective. We similarly studied mice that overexpressed transgenic (Tg) or were deficient knockout (Ko) in the inducible 70 kDa heat shock protein (Hsp70), also previously shown to be protective by our group and others. Cofilin-actin rod formation was assessed by histological analysis at 4 and 24 h after dMCAO. Its expression was analyzed in three different regions, namely, infarct core (the center of the infarct), middle cerebral artery (MCA) borderzone (the edge of the brain regions supplied by the MCA), and the ischemic borderzone (border of ischemic lesion). Ischemic lesion size and neurological deficits were also assessed. RESULTS:Both Hypo-treated and Hsp70 Tg mice had smaller lesion sizes and improved neurological outcomes, whereas Hsp70 Ko mice had larger lesion sizes and worsened neurological outcomes. Cofilin-actin rods were increased after stroke, but were reduced by therapeutic Hypo and in Hsp70 Tg mice. In contrast, cofilin-actin rods were increased in ischemic brains of Hsp70 Ko mice. CONCLUSIONS:Cofilin-actin rod formation was suppressed under the conditions of neuroprotection and increased under circumstances where outcome was worsened. This suggests that cofilin-actin rods may act to participate in or exacerbate ischemic pathology and warrants further study as a potential therapeutic target

    Reversible Cyclosporin A-sensitive Mitochondrial Depolarization Occurs within Minutes of Stroke Onset in Mouse Somatosensory Cortex in Vivo: A TWO-PHOTON IMAGING STUDY*

    No full text
    Neuronal structure and function are rapidly damaged during global ischemia but can in part recover during reperfusion. Despite apparent recovery in the hours/days following an ischemic episode, delayed cell death can be initiated, making it important to understand how initial ischemic events affect potential mediators of apoptosis. Mitochondrial dysfunction and the opening of the mitochondrial permeability transition pore (mPTP) are proposed to link ischemic ionic imbalance to mitochondrially mediated cell death pathways. Using two-photon microscopy, we monitored mitochondrial transmembrane potential (Δψm) in vivo within the somatosensory cortex during ischemia and reperfusion in a mouse global ischemia model. Our results indicated a synchronous loss of Δψm within 1–3 min of ischemic onset that was linked to within seconds of plasma membrane potential (Δψp) depolarization. Δψm recovered rapidly upon reperfusion, and no delayed depolarization was observed over 2 h. Cyclosporin A treatment largely blocked Δψm collapse during ischemia, suggesting a role for the mPTP. Blocking Δψm depolarization did not affect structural damage to dendrites, indicating that the opening of the mPTP and damage to dendrites are separable pathways that are activated during Δψp depolarization. Our findings using in vivo imaging suggest that mitochondrial dysfunction and specifically the activation of the mPTP are early reversible events during brain ischemia that could trigger delayed cell death
    corecore