10 research outputs found

    Protein-tyrosine Phosphatase H1 Controls Growth Hormone Receptor Signaling and Systemic Growth

    Get PDF
    Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo. We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates. In addition, PTP-H1 mutant animals had enhanced plasma and liver mRNA expression of insulin-like growth factor 1, as well as increased bone density and mineral content. These observations point to a controlling role for PTP-H1 in modulating GHR signaling and systemic growth through insulin-like growth factor 1 secretion

    TP53 polymorphism in plasma cell myeloma

    Get PDF
    Introduction. Significant and accessible predictive factors for bortezomib treatment in plasma cell myeloma (PCM) are still lacking. TP53 codon 72 polymorphism (P72R) results in proline (P) or arginine (R) at 72 amino acid position, which causes synthesis of proteins with distinct functions. The aims of our study were to: 1) analyze whether this polymorphism is associated with an increased risk of PCM; 2) study whether the P72R polymorphism affects overall survival (OS) among PCM patients; 3) assess the possible association of the P72R polymorphism with sensitivity to bortezomib in cell cultures derived from PCM patients. Material and methods. Genomic DNA from newly diagnosed 59 patients (without IgVH gene rearrangements and TP53 deletions) and 50 healthy blood donors were analyzed by RFLP-PCR to identify TP53 polymorphism. Chromosomal aberrations were detected by use of cIg-FISH. The lymphocyte cell cultures from a subgroup of 40 PCM patients were treated with bortezomib (1, 2 and 4 nM). Results. The P allele of the P72R polymorphism was more common than the R allele in PMC patients compared to controls (39% vs. 24%), and the difference was significant (p = 0.02). The PP and PR genotypes (in combina­tion) were more frequent among cases than in controls (65% vs. 42%, OR = 2.32, p = 0.04). At the cell culture level and 2 nM bortezomib concentration the PP genotype was associated with higher necrosis rates (10.5%) compared to the PR genotype (5.7%, p = 0.006) or the RR genotype (6.3%, p = 0.02); however, no effect of genotypes was observed at bortezomib concentrations of 1 and 4 nM. The shortest OS (12 months) was observed in patients with the PP genotype compared to patients with the PR or RR genotypes (20 months) (p = 0.04). Conclusions. The results suggest that P72R polymorphisms may be associated with an increased PCM risk and may affect OS of PCM patients. However, we saw no consistent results of the polymorphism effect on apoptosis and necrosis in cell cultures derived from PCM patients. Further studies are need in this regard

    ACE Insertion/Deletion Polymorphism (rs4646994) Is Associated With the Increased Risk of Multiple Myeloma

    Get PDF
    Introduction: The insertion (I allele) deletion (D allele) polymorphism of ACE gene (rs4646994) may influence the etiopathogenesis of multiple myeloma (MM). ACE gene is expressed in bone marrow cells and encodes angiotensin converting enzyme (ACE). It converts angiotensin I to active peptide angiotensin II, which stimulates proliferation of hematopoietic stem cells. This suggests possible association of ACE I/D gene polymorphism with MM. The aim of our study was to check possible impact of this polymorphism on risk of development and outcome of MM, as well as, sensitivity to bortezomib in cell cultures derived from MM patients.Objects and Methods: Genomic DNA from 98 newly diagnosed MM patients and 100 healthy blood donors were analyzed by PCR method. Chromosomal aberrations were detected by use of cIg-FISH. In a subgroup of 40 MM patients nucleated bone marrow cells were treated with bortezomib in vitro.Results: The Hardy-Weinberg equilibrium test showed that genotypic frequencies diverged significantly from the equilibrium. The differences between I and D allele frequencies in control and study population were significant (p = 0.046). We observed the association between DD genotype and more than 2-fold risk of MM - OR = 2.69; p < 0.0001. We did not detect any significant differences among studied genotypes regarding clinical and laboratory parameters. Moreover, we did not observe the association between survival of MM patients and I/D genotypes. Bortezomib increased number of apoptotic and necrotic cells, but the only statistically significant differences were observed in the number of viable cells at 1 nM between ID and DD genotypes (p = 0.026).Conclusion: Presented results confirmed the significant relationship between ACE (I/D) polymorphism and risk of MM development. We did not observe the association of ACE I/D polymorphism with disease outcome and bortezomib in vitro sensitivity

    The Genetic Variants of NOTCH3 (6746T>C) and PSMA6 (-8C>G) as Possible Risk Factors of Psoriasis Development

    No full text
    Advances in genotypic technologies enable identification of possible associations between genetic variants of certain genes and increased risk of developing plaque psoriasis or psoriatic arthritis. The aim of the study was to analyze the NOTCH3 (6746T>C) (rs1044009) and PSMA6 (-8C>G) (rs1048990) polymorphisms and their role in genetic susceptibility to psoriasis. The study included 158 psoriatic patients and 100 healthy controls. The frequencies of the NOTCH3 genotypes differed between the psoriatic patients and healthy controls (p = 0.050). No differences were found in the distribution of PSMA6 genotypes and alleles between the psoriatic patients and healthy controls. The studied psoriatic patients presented a higher frequency of the CC genotype of PSMA6 compared to the healthy controls (8.8% vs. 2%, respectively). Psoriatic arthritis was more frequent among patients with the CC genotype of PSMA6 (p = 0.059). CC homozygosity of NOTCH3 was more commonly observed in the studied psoriatic patients than in the healthy controls (OR = 4.76, p= 0.032). The obtained data suggest that genetic variants of NOTCH3 (6746T>C) and PSMA6 (-8C>G) genes may play significant roles in psoriatic patients. Further studies are necessary to unequivocally determine their role as genetic risk factors of psoriasis development

    ESCRT proteins restrict constitutive NF-kappa B signaling by trafficking cytokine receptors

    No full text
    Because signaling mediated by the transcription factor nuclear factor kappa B (NF-kappa B) is initiated by ligands and receptors that can undergo internalization, we investigated how endocytic trafficking regulated this key physiological pathway. We depleted all of the ESCRT (endosomal sorting complexes required for transport) subunits, which mediate receptor trafficking and degradation, and found that the components Tsg101, Vps28, UBAP1, and CHMP4B were essential to restrict constitutiveNF-kappa B signaling in human embryonic kidney 293 cells. In the absence of exogenous cytokines, depletion of these proteins led to the activation of both canonical and noncanonical NF-kappa B signaling, as well as the induction of NF-kappa B-dependent transcriptional responses in cultured human cells, zebrafish embryos, and fat bodies in flies. These effects depended on cytokine receptors, such as the lymphotoxin beta receptor (LT beta R) and tumor necrosis factor receptor 1 (TNFR1). Upon depletion of ESCRT subunits, both receptors became concentrated on and signaled from endosomes. Endosomal accumulation of LT beta R induced its ligand-independent oligomerization and signaling through the adaptors TNFR-associated factor 2 (TRAF2) and TRAF3. These data suggest that ESCRTs constitutively control the distribution of cytokine receptors in their ligand-free state to restrict their signaling, which may represent a general mechanism to prevent spurious activation of NF-kappa B

    Recruitment of APPL1 to ubiquitin-rich aggresomes in response to proteasomal impairment

    Get PDF
    Inhibitors of proteasomes have been shown to affect endocytosis of multiple membrane receptors, in particular at the step of cargo sorting for lysosomal degradation. Here we demonstrate that the inhibition of proteasomes causes specific redistribution of an endosomal adaptor APPL1, which undergoes initial solubilization from APPL endosomes followed by clustering in the perinuclear region. MG132 treatment decreases APPL1 labeling of endosomes while the staining of the canonical early endosomes with EEA1 remains unaffected. Upon prolonged treatment with proteasome inhibitors, endogenous APPL1 localizes to the site of aggresome formation, with perinuclear APPL1 clusters encapsulated within a vimentin cage and co-localizing with aggregates positive for ubiquitin. The clustering of APPL1 is concomitant with increased ubiquitination and decreased solubility of this protein. We determined that the ubiquitin ligase Nedd4 enhances polyubiquitination of APPL1, and the ubiquitin molecules attached to APPL1 are linked through lysine-63. Taken together, these results add APPL1 to only a handful of endogenous cellular proteins known to be recruited to aggresomes induced by proteasomal stress. Moreover, our studies suggest that the proteasome inhibitors that are already in clinical use affect the localization, ubiquitination and solubility of APPL1
    corecore