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Abstract
Introduction. Significant and accessible predictive factors for bortezomib treatment in plasma cell myeloma 
(PCM) are still lacking. TP53 codon 72 polymorphism (P72R) results in proline (P) or arginine (R) at 72 amino 
acid position, which causes synthesis of proteins with distinct functions. The aims of our study were to: 1) analyze 
whether this polymorphism is associated with an increased risk of PCM; 2) study whether the P72R polymorphism 
affects overall survival (OS) among PCM patients; 3) assess the possible association of the P72R polymorphism 
with sensitivity to bortezomib in cell cultures derived from PCM patients. 
Material and methods. Genomic DNA from newly diagnosed 59 patients (without IgVH gene rearrangements 
and TP53 deletions) and 50 healthy blood donors were analyzed by RFLP-PCR to identify TP53 polymorphism. 
Chromosomal aberrations were detected by use of cIg-FISH. The lymphocyte cell cultures from a subgroup of 
40 PCM patients were treated with bortezomib (1, 2 and 4 nM). 
Results. The P allele of the P72R polymorphism was more common than the R allele in PMC patients compared 
to controls (39% vs. 24%), and the difference was significant (p = 0.02). The PP and PR genotypes (in combina-
tion) were more frequent among cases than in controls (65% vs. 42%, OR = 2.32, p = 0.04). At the cell culture 
level and 2 nM bortezomib concentration the PP genotype was associated with higher necrosis rates (10.5%) 
compared to the PR genotype (5.7%, p = 0.006) or the RR genotype (6.3%, p = 0.02); however, no effect of 
genotypes was observed at bortezomib concentrations of 1 and 4 nM. The shortest OS (12 months) was observed 
in patients with the PP genotype compared to patients with the PR or RR genotypes (20 months) (p = 0.04). 
Conclusions. The results suggest that P72R polymorphisms may be associated with an increased PCM risk and 
may affect OS of PCM patients. However, we saw no consistent results of the polymorphism effect on apoptosis 
and necrosis in cell cultures derived from PCM patients. Further studies are need in this regard. (Folia Histo-
chemica et Cytobiologica 2017, Vol. 55, No. 4, 203–211)
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Introduction

Plasma cell myeloma (PCM; multiple myeloma) rep-
resents 13% of all hematological malignancies and is 
characterized by abnormal division of plasma cells [1, 
2]. The average age of PCM development is 70 years 
[1, 2]. This disease is caused by point mutations and 
chromosomal aberrations. The latter include translo-
cations, deletions and duplications present in plasma 
cells. Cytogenetic changes are important prognostic 
factors in the course of PCM, for example transloca-
tions involving IgHV gene locus (14q32) [3, 4]. These 
translocations include several distinct subtypes, 
the most common being t(11;14)(q13;q32), t(4;14)
(p16;q32) and t(14;16)(q32;q23) [5]. Thus the follow-
ing genes are dysregulated in these translocations: 
CCDN1 gene (locus at 11q13), FGFR3 and MMSET 
(locus at 4p16.3), c-MAF (locus at 16q23) [6, 7]. De-
letions involving locus (17p13) of TP53 gene detected 
in newly diagnosed PCM patients are associated with 
adverse prognosis for progression-free survival (PFS) 
and overall survival (OS) [8–11]. TP53 gene consists 
of 11 exons and belongs to the group of tumor sup-
pressor genes. The protein encoded by this gene acts 
as a transcription factor which regulates expression 
of genes involved in cell cycle progression and cell 
growth. Normal TP53 protein inhibits angiogenesis 
and carcinogenesis [12]. Inactivation of TP53 occurs as 
a result of mutations or is caused by function of other 
cellular or viral proteins [13]. TP53 codon 72 (exon 4)  
polymorphism (rs1042522) is known as a single nucle-
otide polymorphism (SNP) [14]. This SNP is associat-
ed with the presence of nucleotide with G or C [14]. 
Transition of CGC to CCC at codon 72 causes that 
amino acid Arg (R) is replaced by Pro (P) in protein 
structure. The relationship between the presence of 
SNP in TP53 gene and malignant transformation or 
clinical response is still poorly understood, especially 
in PCM. The allele encoding Arg (R allele — wild 
type allele), in comparison to allele encoding Pro 
(P allele), is associated primarily with the induction 
of apoptosis [15, 16]. On the other hand, P allele, in 
comparison to wild type allele, causes more efficient 
cell cycle arrest in G1 phase and DNA repair [16, 17]. 
Arg is localized in the hydrophobic region of the pro-
tein which determines the change in its conformation 
and DNA binding. These features are essential for 
cell growth suppression [18].

Many researchers have paid attention to the corre-
lation between TP53 codon 72 polymorphism (P72R) 
and the risk of hematological malignancies [19–24]. R 
alleles are associated with an increased risk of solid 
tumors, such as colorectal cancer, breast cancer and 
lung cancer [25]. The higher frequency of P allele is 
observed in lung and thyroid cancers [26]. 

Cancer cells are characterized by an increased 
proliferation and the ability to metastasize. These 
processes are regulated by the proteasome, which 
degrades short-lived proteins involved in regulation 
of cell growth, gene expression, DNA repair, signal 
transduction and cell cycle progression [27]. The 
proteasome pathway is a target for a novel cancer 
therapy [28]. Bortezomib is approved for clinical use 
in PCM patients and its function as highly selective 
proteasome inhibitor affects intracellular protein 
degradation and changes in various signaling pathways 
within the cell. The inhibition of proteasome causes 
many effects, for example unfolded proteins response, 
autophagy, and apoptosis in the case of severe DNA 
damage [29, 30]. 

Considering the above, we decided to: 1) in-
vestigate whether the P72R polymorphism confers 
increased risk of PCM; 2) analyze whether the P72R 
polymorphism may affect OS of PCM patients; and 
3) analyze whether the P72R polymorphism predicts 
response to bortezomib in cell cultures derived from 
PCM patients without IgVH rearrangements and 
TP53 deletions. 

Material and methods

Patients and bone marrow sampling. For the study, bone 
marrow aspirates were taken from 59 newly-diagnosed 
patients with PCM in years 2013–2016, who were hospi-
talized at the Chair and Department of Hematooncology 
and Bone Marrow Transplantation, Medical University of 
Lublin, and Department of Hematology, Holy Cross Can-
cer Center, Kielce, Poland. The study was conducted after 
obtaining a positive opinion from the Bioethics Committee 
(no. KE-0254/165/2013). Abnormalities essential for PCM, 
such as TP53 gene deletion and IgHV gene rearrangements  
— t(4;14), t(8;14), t(11;14), t(14;16), were tested by cIg-FISH 
according to Ross et al. [31]. The presence of chromosomal 
aberrations affects the prognosis of PCM. Patients without 
TP53 gene and IgVH gene mutations were included in the 
study. This allowed us to obtain homogeneous group, and 
assess the association of TP53 gene polymorphism with 
shorter OS. The characteristics of PCM patients are shown 
in Table 1. 

Bone marrow aspirates were divided into two parts. 
From the first part (n = 59), DNA was isolated and used 
for determining polymorphism in the TP53 gene. From the 
second part, cell cultures were established to carry out re-
search associated with cIg-FISH (n = 59), as well as necrosis 
and apoptosis determination (n = 40).

Control samples were made of peripheral blood taken 
from 50 healthy blood donors at the Regional Blood Dona-
tion and Blood Treatment Center in Kielce. 

All patients and healthy blood donors have signed an 
informed consent to provide their samples for this study.
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DNA isolation. DNA isolation from bone marrow aspirates 
(n = 59) and peripheral blood (n = 50) was performed using 
a commercial kit (Qiagen, Hilden, Germany) according to 
manufacturer’s procedure. The concentration and quality of 
DNA was checked using NanoDrop device (Thermo Fisher 
Scientific, Waltham, MA, USA).

TP53 codon 72 polymorphism. The RFLP-PCR (restriction 
fragment length polymorphism PCR) method was applied 
for the analysis of SNP. TP53 gene fragment length of 199 
bp was amplified by PCR using primers: -forward 5’-TTG 
CCG TCC CAA GCA ATG GAT GA-3’; -reverse 5’-TCT 
GGG AAG GGA CAG AAG ATG AC-3’
Each PCR mixture (25 µL) contained 150 ng genomic DNA 
and PCR buffer (Clontech Laboratories, Mountain View, CA, 
USA), dNTPs mixture (0.25 mM), HD polymerase (Clontech 
Laboratories) and primers (10 µM of each). The mixture was 
heated at 94°C for 3 min and underwent 35 cycles of ampli-
fication: denaturation at 94°C for 15 s, annealing at 55°C for 
10 s, elongation at 72°C for 30 s. The final elongation took 
3 min at 72°C. The PCR reaction was performed using 9700 
Thermal Cycler (Applied Biosystems, Foster City, CA, USA). 

The PCR product was digested with BstUI (Thermo 
Fisher Scientific, USA) for 16 h at 37°C producing two 
fragments of 113 and 86 bp or one fragment of 199 bp for 

presence of R or P allele, respectively. RFLP products 
were analyzed on 3% agarose gel stained with SimplySafe 
(Eurx, Gdansk, Poland) and visualized in G:Box (Syngene, 
Cambridge, UK) (Fig. 1).

Simultaneous staining of cytoplasmic immunoglobulin with 
FISH (cIg-FISH). Cultured bone marrow malignant plasma 
cells from 59 patients were identified using simultaneous 
staining of cytoplasmic immunoglobulin and FISH (cIg- 
-FISH) according to the previously described protocol with 
modifications [32, 33]. The following probes, all from Abbott 
Molecular (Abbott Molecular, Abbott Park, IL, USA), were 
used: Vysis TP53/CEP 17 FISH Probe Kit for detection 
of del(17p13.1), Vysis IGH/FGFR3 DF FISH Probe Kit 
for detection of t(4;14)(p16;q32), Vysis IGH/MYC/CEP8 
Tri-Color Dual Fusion FISH Probe Kit for detection of 
t(8;14)(q24;q32), Vysis IGH/CCND1 DF FISH Probe Kit 
for detection of t(11;14)(q13;q32), and Vysis IGH/MAF 
DF FISH Probe Kit for detection of t(14;16)(q32;q23). 
Fluorescent microscopic analysis was performed by scoring 
100 AMCA (aminomethylcoumarin acetate)-positive plasma 
cells to determine the frequency of each aberration. Cut-off 
levels were 20% for deletion probes and 10% for dual fusion 
probes, according to the recommendations of the European 
Myeloma Network [31].

Table 1. Clinical features of plasma cell myeloma (PCM) patients at the time of diagnosis

Patients All patients 
n = 59

PP homozygous 
n = 8

Heterozygous 
n = 30

RR homozygous 
n = 21

Male/female 35/24 6/2 18/12 11/10

Mean age (years) 69.6 ± 9.62 67 ± 9.2 71 ± 9.9 71 ± 7.9

Type of PCM

IgG 44 7 23 14

IgA 12 1 7 4

IgD 0 0 0 0

IgM 1 0 0 1

Light chain 1 0 0 1

Nonsecretory 1 0 0 1

Albumins (%) 38.9 ± 8.74 38.45 ± 7.6 38.76 ± 8.9 39.52 ± 8.8

b2-microglobulin [mg/L] 7.5 ± 3.30 10.58 ± 3.7 7.48 ± 2.9 6.37 ± 2.7

Calcium [mM/L] 2.41 ± 0.30 2.47 ± 0.26 2.49 ± 0.35 2.29 ± 0.16

Hemoglobin [g/dL] 10.5 ± 1.70 9.59 ± 1.8 10.59 ± 1.6 10.7 ± 1.6

Follow-up*

(Range 0–48 months) 30.80 ± 11.20 21.05 ± 10.5 34 ± 11.7 37.1 ± 10.8

Follow-up#

(Range 4–17 months) 9.60 ± 2.38 6.0 ± 1.1 10.70 ± 2.90 12.20 ± 3.40

Overall survival (Range 1–36 months) 18.7 ± 12.8 12.25 ± 10.8 18.95 ± 12.3 21 ± 13.2

Data are presented as means and standard deviation. *From the moment of PCM diagnosis; #From the end of treatment.
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Cell cultures, apoptosis and necrosis detection. Bone mar-
row aspirates (n = 40) (mean number of plasma cells was 
34% ± 17%) were stratified on Lymphoprep (Axis-Shield, 
Dundee, UK) and lymphocyte fraction was used to estab-
lished cell cultures for apoptosis and necrosis detection. 
The cultures of lymphocyte fraction were grown in 15 mL of 
culture medium — RPMI 1640 with L-glutamine (Biomed, 
Poland); 10% inactivated fetal calf serum (Biomed, Lublin, 
Poland), 1% antibiotic antimycotic (A&E Scientific, En-
ghien, Belgium), and different concentrations of bortezomib 
(LC Laboratories, Woburn, MA, USA, 200 mg/mL) — 1 nM,  
2 nM and 4 nM. Bortezomib was dissolved in DMSO and 
stored at −80°C. The final DMSO concentration in culture 
medium was less than 0.1%. Cell cultures without bortezo-
mib (with 0.1% DMSO) were used as a control. The volume 
of 1.0–1.5 mL of lymphocyte fraction (from each patient) 
was added respectively to 15 mL of culture medium. The 
cultures were grown at 37°C in the atmosphere of 5% CO2 
for 24 h. Afterwards the cell cultures were routinely ter-
minated and cell suspensions were prepared to determine 
apoptosis and necrosis levels by the use of Annexin V-Cy3 
Apoptosis Detection Kit according to manufacturer’s pro-
tocol (Sigma-Aldrich, St. Louis, MO, USA). Viable cells 
stained green with 6-CF (6-carboxyfluorescein), whereas 
necrotic cells stained red with AnnCy3 (Annexin V Cy3.18) 

as analyzed with fluorescent microscope (Nikon Eclipse Ni-
U, Nikon, Tokyo, Japan). Cells starting apoptotic process 
were stained both with AnnCy3 (red) and 6-CF (green) 
(Fig. 2). Mainly plasma cells (with diameter 9–12 µm) 
were analyzed using fluorescence microscopy according 
to Carter et al. [34]. 

Statistical analysis. Values of the analyzed parameters 
were characterized using frequencies and proportion when 
measured according to a nominal scale, and characterized 
using the average and standard deviation and median with 
the range of variation when measured according to an inter-
val scale. The prevalence of the variant alleles in cases and 
controls was compared. Odds ratios (ORs) were generated 
from two-by-two tables and statistical significance was as-
sessed with the Fisher exact test. The Sidak correction test 
was employed to analyze association of the P72R polymor-
phism with clinical data, number of apoptotic, necrotic and 
viable cells. For survival analysis, Cox regression test was 
used. We assumed a 5% error of inference and the related 
level of significance p < 0.05 pointing to the existence of 
statistically significant differences. Statistical analyzes were 
performed using the IBM SPSS Statistics.

Results

TP53 codon 72 polymorphism in the studied groups
The distribution of the genotypes was consistent with 
Hardy-Weinberg equilibrium for tested polymor-
phism. The P and R allele frequencies were different 
in PCM patients than in controls. The P allele fre-
quency was higher in PCM patients, than in control 
group (39% vs. 24% respectively; p = 0.02) (Table 2). 
Also, the PP and PR genotypes (in combination) were 
more frequent among PCM cases than in controls 
(65% vs. 42%) and the difference was significant (OR 
= 2.32, p = 0.04) (Table 3).

Furthermore, the Tp53 genotypes were correlated 
with clinical data (Table 1). The statistically significant 
differences were observed only at the level of b2-mi-
croglobulin between PP vs. PR (p = 0.045) and PP 
vs. RR (p = 0.006) genotypes. Also, we analyzed the 
correlation between P72R polymorphisms and OS of 
PCM patients. The mean overall survival in patients 
with the PP genotype was significantly worse than the 
survival among carriers of the PR or RR genotype 
(12 vs. 20 months, p = 0.04 for difference) (Table 4).

Effects of bortezomib on apoptosis and necrosis  
in the cell cultures of PCM patients
Bortezomib increased necrosis and apoptosis in all 
studied genotypes. The concentration of 12 nM caused 
death of at least 50% of cells in all genotypes (PP  
— 54.4%, PR — 51.83% and RR — 55.25%). 

Figure 1. TP53 polymorphism analysis by RFLP-PCR. Line 1  
— leader marker (100 bp), line 2 — 199 bp band (PP ho-
mozygote), lines 3 and 4 — 86 bp and 113 bp bands (RR 
homozygotes). The analysis was performed as described in 
Material and methods.
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The proportion of necrotic cells increased with borte-
zomib concentration and reached the highest values  
at 4 nM for the PP genotype (Table 5, Fig. 2). We 
observed that the PP genotype at 2 nM of bortezomib 
was associated with a higher necrosis rates (10.5%) 

compared to PR (5.71%) or RR (6.28%) genotype, 
but there was no effect of this drug on necrosis rate at 
bortezomib concentrations of 1 and 4 nM. In the case of 
necrosis, the statistically significant results were observed 
at 2 nM bortezomib between the PP vs. PR (p = 0.006) 

Figure 2. Effects of bortezomib on apoptosis and necrosis of nucleated bone marrow cells. Green — viable cells, red — ne-
crotic cells, yellow-red and green-red — apoptotic cells. A. Apoptotic cells; B. Necrotic cell and lymphocytes (green). For 
statistical analysis of necrotic/apoptotic/viable cells only plasmocytes with diameter 9–12 µm were counted. Cells were stained 
by immunofluorescent technique as described in Material and methods. Total magnification: 1,500×.

Table 2. The allele frequencies of the P72R polymorphism of TP53 gene in PCM patients and control subjects

Allele Frequency (%)in study group (n = 59) Frequency (%) in control group (n = 50) p-value

P 39%
n = 46

24%
n = 24

p = 0.02

R 61%
n = 72

76%
n = 76
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and the PP vs. RR (p = 0.022) genotypes. In a group 
without bortezomib the highest amount of necrotic cells 
was observed in the PR heterozygotes (Table 5).

Our study also showed, that bortezomib adminis-
tration increased apoptosis levels in PCM cell cultures 
in all genotypes — PP, PR and RR (Table 5, Fig. 2).  

The highest apoptosis level was observed in RR ho-
mozygotes at 1, 2 and 4 nM bortezomib. However, the 
differences between genotypic groups in the case of 
apoptosis were not statistically significant.

The statistically significant differences were ob-
served in the number of viable cells after bortezomib 

Table 3. The distribution of genotypes of the P72R polymorphism of TP53 gene in PCM patients and control subjects

Genotype Frequency (%)
in study group  

(n = 59)

Frequency (%)
in control group 

(n = 50)

OR; 95% CI; p-value
(PP and PR vs. RR)

PP 15.25% 
n = 9

6.0% 
n = 3

OR = 2.32 
95% CI 1.07–5.02

p = 0.036
PR 47.46%

n = 28
36.0%
n = 18

RR 37.29%
n = 22

58.0%
n = 29

Table 5. The effect of different bortezomib doses on PCM cells apoptosis, viability and necrosis by genotypes of the P72R 
polymorphism

Genotypes Bortezomib/DMSO

Control (0 nM)
0.1% DMSO

1 nM 2 nM 4 nM

Necrotic cells (%)

PP (n = 16) 1.99 ± 1.16 5.84 ± 3.11 10.50*, # ± 9.60 12.69 ± 5.44

PR (n = 19) 3.50 ± 4.76 5.07 ± 3.24 5.71* ± 1.93 12.13 ± 6.74

RR (n = 5) 1.99 ± 1.84 3.86 ± 2.40 6.28# ± 3.17 12.11 ± 7.13

Apoptotic cells (%)

PP (n = 16) 3.56 ± 2.85 12.27 ± 7.70 18.25 ± 3.69 20.03 ± 6.14

PR (n = 19) 5.35 ± 3.99 13.44 ± 7.95 16.82 ± 4.41 24.69 ± 10.97

RR (n = 5) 5.23 ± 5.38 18.12 ± 15.12 22.57 ± 12.64 27 ± 11.61

Viable cells (%)

PP (n = 16) 94.20 ± 5.56 74.90 ± 12.57 63.46*, # ± 15.4 68.28 ± 7.01

PR (n = 19) 91.11 ± 6.88 80.21 ± 10.60 77.34 ± 8.42 67.52 ± 12.15

RR (n = 5) 89.31 ± 8.07 77.78 ± 13.77 72.86 ± 13.27 66.36 ± 12.66

Data are presented as means and standard deviation. *, # The differences between PP vs. PR and PP vs. RR genotypes, respectively, were statistically 
significant; * and # denote p < 0.01 and p < 0.05, respectively.

Table 4. Mean overall survival differences between TP53 genotypic groups in PCM patients

Genotype Mean OS in genotypic groups p-value

PP PR RR

PP vs. (PR + RR) 12.25 19.80 0.038

PP vs. PR 12.25 18.95 – 0.19

PP vs. RR 12.25 – 21 0.064

PR vs. RR – 18.95 21 0.389
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treatment at 2 nM between PP vs. PR (p = 0.0004) 
and PP vs. RR (p = 0.0004) genotypes. The highest 
numbers of viable cells were noted in the PP genotype 
in control cell and at 4 nM bortezomib, and in PR 
heterozygotes at 1 nM and 2 nM drug concentrations.

Discussion

Plasma cell myeloma still remains incurable disease 
despite considerable therapeutic advances or new 
drugs like bortezomib. This anti-cancer drug acts as 
26S proteasome inhibitor. The proteasome enzymes 
are involved in the degradation of unneeded, damaged 
or misfolded proteins, which are polyubiquitined by 
ubiquitin ligases [35]. E3 ubiquitin ligase (MDM2) 
promotes polyubiquitination of TP53 protein, and 
then its degradation in the 26S proteasome. This 
mechanism maintains the TP53 gene expression on 
the normal level [36, 37]. The SNPs at codon 72 of 
TP53 gene are present in the transactivation domain 
and may be associated with an increased expression 
of this gene [38, 39]. The use of bortezomib prevents 
the overexpression of MDM2, which causes that TP53 
protein is not polyubiquitinated and degraded [40]. 

The malignant microenvironment plays an im-
portant role in the regulation of mechanisms such as 
apoptosis or necrosis, and in the response to borte-
zomib [41]. Our research showed that bortezomib 
increased the number of apoptotic and necrotic cells. 
The highest apoptosis levels were observed in RR 
homozygotes. It is known that R allele encodes Arg 
72 protein, which has a much greater ability to induce 
apoptosis as a result of different location within the 
mitochondria [15, 16, 20]. Dunna et al. found higher 
frequency of RR genotype in young patients (< 20 
years) with acute myeloid leukemia (AML) [20]. In 
our studies lower age of onset in RR homozygotes was 
observed, but this result was statistically insignificant. 

We found the highest amount of necrotic cells in 
PP genotypes. We observed higher P allele frequency 
in PCM patients than in healthy blood donors group, 
as had been described in the study performed by 
Ortega et al. [23]. It is known that allele P activates 
the transcription of genes involved in the nucleotide 
excision repair and Pro 72 protein more effectively 
arrests cell cycle in G1 phase [17, 42]. This is probably 
due to altered binding affinity of TP53 protein [42]. 
We supposed, that higher necrosis levels in PP gen-
otypes are a result of insufficient or disturbed DNA 
repair mechanisms. When DNA repair is insufficient, 
the cell should undergo apoptosis. Abnormalities in 
programmed cell death may cause necrosis [43]. 

Our studies showed no consistent results concern-
ing the correlation of the P72R polymorphism with 

the response to bortezomib. We noted statistically 
significant results only at a dose of 2 nM, but this effect 
was not seen using 1 nM and 4 nM of bortezomib. The 
effect at 2 nM was weak and of marginal statistical 
significance. We made many statistical comparisons 
and some may be by the chance. Further analyses are 
necessary in this regard.

There are studies which showed correlation 
between the P72R polymorphism and clinical data. 
Hattori et al. in the study of PCM patients (n = 39) 
described shorter progression-free survival (PFS), 
OS, and post-relapse survival in PP homozygotes in 
comparison to patients with PR and RR genotypes 
[21]. Similarly, in our study were observed shortest 
OS rates in patients with PP genotypes compared to 
carriers of other genotypes.

There are results which showed that TP53 codon 
72 polymorphisms might be related to increased 
susceptibility to hematological malignancies. For 
example Liu et al. in patients with chronic myeloid 
leukemia (CML) found correlation between the PP 
genotype and increased susceptibility to this disease 
[22]. Our results showed that carriers of the P allele 
(PP or PR genotype) may be at about 2-fold increased 
risk of PCM. In addition, we observed the highest 
b2-microglobulin levels in carriers of the PP genotype. 
This protein is a serum marker of PCM development. 
Patients with high levels of b2-microglobulin have 
an unfavorable prognosis [44]. We did not see any 
association of the P72R polymorphism with other 
clinical factors. 

Additionally, TP53 codon 72 polymorphisms may 
coexist with mutations in various position of this gene. 
Mutations in TP53 gene are rare (≈ 3%) in newly diag-
nosed PCM patients [45]. These incidents are higher 
as the stage of disease advances [45]. TP53 point 
mutations are often associated with poor prognosis 
and low survival rate [45]. Chromosomal aberration 
in the form of 17p13 (TP53 locus) deletion is a recur-
rent abnormality in PCM patients, which is associated 
with less favorable outcome [45–47]. This cytogenetic 
mutation defined poor prognosis and resistance to 
chemotherapy of PCM patients [48, 49]. In our study 
we decided to analyze a smaller but homogeneous 
study group — patients without TP53 deletion and 
IgVH rearrangements (translocations). 

In summary, our results showed that the P72R 
polymorphism may be associated with increased 
risk of PCM and may affect OS of PCM patients. 
Bortezomib increased apoptosis and necrosis levels at  
2 nM, but there was no statistical effect of this drug at 
concentrations of 1 and 4 nM. As the results are not 
consistent, it is necessary to continue our research in 
a larger cohort. This will allow precise analysis of ap-
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optotic and necrotic cells in studied TP53 genotypes, 
and their correlation with clinical parameters.
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