44 research outputs found

    Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes

    Get PDF
    Functionality of the accessory gene regulator (agr) quorum sensing system is an important factor promoting either acute or chronic infections by the notorious opportunistic human and veterinary pathogen Staphylococcus aureus. Spontaneous alterations of the agr system are known to frequently occur in human healthcare-associated S. aureus lineages. However, data on agr integrity and function are sparse regarding other major clonal lineages. Here we report on the agr system functionality and activity level in mecC-carrying methicillin resistant S. aureus (MRSA) of various animal origins (n = 33) obtained in Europe as well as in closely related human isolates (n = 12). Whole genome analysis assigned all isolates to four clonal complexes (CC) with distinct agr types (CC599 agr I, CC49 agr II, CC130 agr III and CC1943 agr IV). Agr functionality was assessed by a combination of phenotypic assays and proteome analysis. In each CC, isolates with varying agr activity levels were detected, including the presence of completely non-functional variants. Genomic comparison of the agr I-IV encoding regions associated these phenotypic differences with variations in the agrA and agrC genes. The genomic changes were detected independently in divergent lineages, suggesting that agr variation might foster viability and adaptation of emerging MRSA lineages to distinct ecological niches

    Sharing more than friendship - nasal colonization with coagulase-positive staphylococci (CPS) and co-habitation aspects of dogs and their owners

    Get PDF
    Background Since the relationship between dogs and their owners has changed, and dogs moved from being working dogs to family members in post-industrial countries, we hypothesized that zoonotic transmission of opportunistic pathogens like coagulase positive staphylococci (CPS) is likely between dogs and their owners. Methodology/Principal Findings CPS- nasal carriage, different aspects of human-to-dog relationship as well as potential interspecies transmission risk factors were investigated by offering nasal swabs and a questionnaire to dog owners (108) and their dogs (108) at a dog show in 2009. S. aureus was found in swabs of 20 (18.5%) humans and two dogs (1.8%), and spa types which correspond to well known human S. aureus lineages dominated (e.g. CC45, CC30 and CC22). Multilocus sequence typing (MLST) of the two canine strains revealed ST72 and ST2065 (single locus variant of ST34). Fifteen dogs (13.9%) and six owners (5.6%) harboured S. pseudintermedius, including one mecA-positive human isolate (MRSP). Pulsed field gel electrophoresis (PFGE) revealed that one dog/owner pair harboured indistinguishable S. pseudintermedius- isolates of ST33. Ten (48%) of the 21 S. pseudintermedius-isolates showed resistance towards more than one antimicrobial class. 88.9% of the dog owners reported to allow at least one dog into the house, 68.5% allow the dog(s) to rest on the sofa, 39.8% allow their dogs to come onto the bed, 93.5% let them lick their hands and 52.8% let them lick their face. Bivariate analysis of putative risk factors revealed that dog owners who keep more than two dogs have a significantly higher chance of being colonized with S. pseudintermedius than those who keep 1–2 dogs (p<0.05). Conclusions/Recommendations In conclusion, CPS transmission between dog owners and their dogs is possible. Further investigation regarding interspecies transmission and the diverse adaptive pathways influencing the epidemiology of CPS (including MRSA and MRSP) in different hosts is needed

    Comparable High Rates of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli in Birds of Prey from Germany and Mongolia

    Get PDF
    Frequent contact with human waste and liquid manure from intensive livestock breeding, and the increased loads of antibiotic-resistant bacteria that result, are believed to be responsible for the high carriage rates of ESBL- producing E. coli found in birds of prey (raptors) in Central Europe. To test this hypothesis against the influence of avian migration, we initiated a comparative analysis of faecal samples from wild birds found in Saxony-Anhalt in Germany and the Gobi-Desert in Mongolia, regions of dissimilar human and livestock population characteristics and agricultural practices. We sampled a total of 281 wild birds, mostly raptors with primarily north-to-south migration routes. We determined antimicrobial resistance, focusing on ESBL production, and unravelled the phylogenetic and clonal relatedness of identified ESBL-producing E. coli isolates using multi-locus sequence typing (MLST) and macrorestriction analyses. Surprisingly, the overall carriage rates (approximately 5%) and the proportion of ESBL-producers among E. coli (Germany: 13.8%, Mongolia: 10.8%) were similar in both regions. Whereas blaCTX-M-1 predominated among German isolates (100%), blaCTX-M-9 was the most prevalent in Mongolian isolates (75%). We identified sequence types (STs) that are well known in human and veterinary clinical ESBL-producing E. coli (ST12, ST117, ST167, ST648) and observed clonal relatedness between a Mongolian avian ESBL-E. coli (ST167) and a clinical isolate of the same ST that originated in a hospitalised patient in Europe. Our data suggest the influence of avian migratory species in the transmission of ESBL-producing E. coli and challenge the prevailing assumption that reducing human influence alone invariably leads to lower rates of antimicrobial resistance

    The mecC-Harboring Region Is a Recombination Hot Spot in Staphylococcus stepanovicii

    Get PDF
    Introduction Horizontal gene transfer (HGT) is an important driver for resistance- and virulence factor accumulation in pathogenic bacteria such as Staphylococcus aureus. Methods Here, we have investigated the downstream region of the bacterial chromosomal attachment site (attB) for the staphylococcal cassette chromosome mec (SCCmec) element of a commensal mecC- positive Staphylococcus stepanovicii strain (IMT28705; ODD4) with respect to genetic composition and indications of HGT. S. stepanovicii IMT28705 was isolated from a fecal sample of a trapped wild bank vole (Myodes glareolus) during a screening study (National Network on “Rodent-Borne Pathogens”) in Germany. Whole genome sequencing (WGS) of IMT28705 together with the mecC- negative type strain CM7717 was conducted in order to comparatively investigate the genomic region downstream of attB (GenBank accession no. KR732654 and KR732653). Results The bank vole isolate (IMT28705) harbors a mecC gene which shares 99.2% nucleotide (and 98.5% amino acid) sequence identity with mecC of MRSA_LGA251. In addition, the mecC-encoding region harbors the typical blaZ-mecC-mecR1-mecI structure, corresponding with the class E mec complex. While the sequences downstream of attB in both S. stepanovicii isolates (IMT28705 and CM7717) are partitioned by 15 bp direct repeats, further comparison revealed a remarkable low concordance of gene content, indicating a chromosomal “hot spot” for foreign DNA integration and exchange. Conclusion Our data highlight the necessity for further research on transmission routes of resistance encoding factors from the environmental and wildlife resistome

    A Look into the Melting Pot: The mecC-Harboring Region Is a Recombination Hot Spot in Staphylococcus stepanovicii

    Get PDF
    Publisher's version, source: http://dx.doi.org/10.1371/journal.pone.0147150.INTRODUCTION Horizontal gene transfer (HGT) is an important driver for resistance- and virulence factor accumulation in pathogenic bacteria such as Staphylococcus aureus. METHODS Here, we have investigated the downstream region of the bacterial chromosomal attachment site (attB) for the staphylococcal cassette chromosome mec (SCCmec) element of a commensal mecC-positive Staphylococcus stepanovicii strain (IMT28705; ODD4) with respect to genetic composition and indications of HGT. S. stepanovicii IMT28705 was isolated from a fecal sample of a trapped wild bank vole (Myodes glareolus) during a screening study (National Network on “Rodent-Borne Pathogens”) in Germany. Whole genome sequencing (WGS) of IMT28705 together with the mecC-negative type strain CM7717 was conducted in order to comparatively investigate the genomic region downstream of attB (GenBank accession no. KR732654 and KR732653). RESULTS The bank vole isolate (IMT28705) harbors a mecC gene which shares 99.2% nucleotide (and 98.5% amino acid) sequence identity with mecC of MRSA_LGA251. In addition, the mecC-encoding region harbors the typical blaZ-mecC-mecR1-mecI structure, corresponding with the class E mec complex. While the sequences downstream of attB in both S. stepanovicii isolates (IMT28705 and CM7717) are partitioned by 15 bp direct repeats, further comparison revealed a remarkable low concordance of gene content, indicating a chromosomal “hot spot” for foreign DNA integration and exchange. CONCLUSION Our data highlight the necessity for further research on transmission routes of resistance encoding factors from the environmental and wildlife resistome

    Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes

    Get PDF
    Functionality of the accessory gene regulator (agr) quorum sensing system is an important factor promoting either acute or chronic infections by the notorious opportunistic human and veterinary pathogen Staphylococcus aureus. Spontaneous alterations of the agr system are known to frequently occur in human healthcare-associated S. aureus lineages. However, data on agr integrity and function are sparse regarding other major clonal lineages. Here we report on the agr system functionality and activity level in mecC-carrying methicillin resistant S. aureus (MRSA) of various animal origins (n = 33) obtained in Europe as well as in closely related human isolates (n = 12). Whole genome analysis assigned all isolates to four clonal complexes (CC) with distinct agr types (CC599 agr I, CC49 agr II, CC130 agr III and CC1943 agr IV). Agr functionality was assessed by a combination of phenotypic assays and proteome analysis. In each CC, isolates with varying agr activity levels were detected, including the presence of completely non-functional variants. Genomic comparison of the agr I–IV encoding regions associated these phenotypic differences with variations in the agrA and agrC genes. The genomic changes were detected independently in divergent lineages, suggesting that agr variation might foster viability and adaptation of emerging MRSA lineages to distinct ecological niches.Peer Reviewe

    Sharing More than Friendship — Nasal Colonization with Coagulase-Positive Staphylococci (CPS) and Co-Habitation Aspects of Dogs and Their Owners

    Get PDF
    BACKGROUND: Since the relationship between dogs and their owners has changed, and dogs moved from being working dogs to family members in post-industrial countries, we hypothesized that zoonotic transmission of opportunistic pathogens like coagulase positive staphylococci (CPS) is likely between dogs and their owners. METHODOLOGY/PRINCIPAL FINDINGS: CPS- nasal carriage, different aspects of human-to-dog relationship as well as potential interspecies transmission risk factors were investigated by offering nasal swabs and a questionnaire to dog owners (108) and their dogs (108) at a dog show in 2009. S. aureus was found in swabs of 20 (18.5%) humans and two dogs (1.8%), and spa types which correspond to well known human S. aureus lineages dominated (e.g. CC45, CC30 and CC22). Multilocus sequence typing (MLST) of the two canine strains revealed ST72 and ST2065 (single locus variant of ST34). Fifteen dogs (13.9%) and six owners (5.6%) harboured S. pseudintermedius, including one mecA-positive human isolate (MRSP). Pulsed field gel electrophoresis (PFGE) revealed that one dog/owner pair harboured indistinguishable S. pseudintermedius- isolates of ST33. Ten (48%) of the 21 S. pseudintermedius-isolates showed resistance towards more than one antimicrobial class. 88.9% of the dog owners reported to allow at least one dog into the house, 68.5% allow the dog(s) to rest on the sofa, 39.8% allow their dogs to come onto the bed, 93.5% let them lick their hands and 52.8% let them lick their face. Bivariate analysis of putative risk factors revealed that dog owners who keep more than two dogs have a significantly higher chance of being colonized with S. pseudintermedius than those who keep 1-2 dogs (p<0.05). CONCLUSIONS/RECOMMENDATIONS: In conclusion, CPS transmission between dog owners and their dogs is possible. Further investigation regarding interspecies transmission and the diverse adaptive pathways influencing the epidemiology of CPS (including MRSA and MRSP) in different hosts is needed

    Genome-wide association reveals host-specific genomic traits in Escherichia coli

    Get PDF
    Background: Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. Results: We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. Conclusions: This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli

    Genome-wide association reveals host-specific genomic traits in Escherichia coli

    Get PDF
    BACKGROUND: Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. RESULTS: We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. CONCLUSIONS: This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore