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Abstract

Introduction

Horizontal gene transfer (HGT) is an important driver for resistance- and virulence factor

accumulation in pathogenic bacteria such as Staphylococcus aureus.

Methods

Here, we have investigated the downstream region of the bacterial chromosomal attach-

ment site (attB) for the staphylococcal cassette chromosomemec (SCCmec) element of a

commensalmecC-positive Staphylococcus stepanovicii strain (IMT28705; ODD4) with

respect to genetic composition and indications of HGT. S. stepanovicii IMT28705 was iso-

lated from a fecal sample of a trapped wild bank vole (Myodes glareolus) during a screening

study (National Network on “Rodent-Borne Pathogens”) in Germany. Whole genome

sequencing (WGS) of IMT28705 together with themecC-negative type strain CM7717 was

conducted in order to comparatively investigate the genomic region downstream of attB
(GenBank accession no. KR732654 and KR732653).

Results

The bank vole isolate (IMT28705) harbors amecC gene which shares 99.2% nucleotide

(and 98.5% amino acid) sequence identity withmecC of MRSA_LGA251. In addition, the

mecC-encoding region harbors the typical blaZ-mecC-mecR1-mecI structure, correspond-
ing with the class Emec complex. While the sequences downstream of attB in both S. ste-
panovicii isolates (IMT28705 and CM7717) are partitioned by 15 bp direct repeats, further

comparison revealed a remarkable low concordance of gene content, indicating a chromo-

somal “hot spot” for foreign DNA integration and exchange.
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Conclusion

Our data highlight the necessity for further research on transmission routes of resistance

encoding factors from the environmental and wildlife resistome.

Introduction
Since the late 1970’s, methicillin resistance in coagulase-positive staphylococci (CPS) emerged
as a major threat to both human and veterinary medicine [1]. Methicillin resistance is con-
ferred by an additional penicillin binding protein (PBP2a), which substitutes the transpeptidase
function of the native PBP2 during the crucial process of bacterial cell wall building in the pres-
ence of beta-lactam antibiotics [2]. The gene encoding PBP2a in staphylococci is part of amec
complex, consisting of a methicillin resistance encodingmec homologue (mecA ormecC),
which is usually accompanied by intact or truncated versions of the regulatory genesmecI
(repressor) andmecR1 (sensor inducer) [3,4]. A further regulatory component,mecR2 (antire-
pressor) influencing methicillin resistance levels, was recently described [5]. So far, three differ-
ent allotypes were described formecA andmecC, respectively [6].

Themec complex can be part of a larger, potential mobile element called staphylococcal
cassette chromosomemec (SCCmec). These SCCmec elements also contain site-specific
recombinase genes (ccrAB or ccrC) and flanking “junkyard” or “joining” (“J”) regions (J1–J3)
[7,8]. In Staphylococcus aureus, the SCCmec insertion occurs at the bacterial chromosomal
attachment site (attBSCC), represented by the terminal nucleotides of the 3’ end of an rRNA
methyltransferase (formerly: orfX), leaving the gene functionally intact [9]. Usually, SCCmec
elements are flanked by characteristic sequences of 15 bp (“direct repeats”; DR) that are recog-
nized by the recombinases catalyzing the processes of chromosomal excision and integration
[10,11]. Spontaneous excision of SCCmec leaves only one DR in the chromosome [12,13]. A
review by the International Working Group on the Staphylococcal Cassette Chromosome ele-
ments (IWG-SCC) published in 2009 provides an overview on the eleven distinct SCCmec ele-
ments, several other SCC’s as well as atypical SCCmec elements which have been described so
far [14]. In addition, the IWG-SCC hosts a data base on current SCCmec elements (http://
www.sccmec.org/).

In 2011, amecA homologue denominated asmecC located on an SCCmec type XI element
was described in methicillin resistant Staphylococcus aureus (MRSA) isolates from both human
and bovine origin, and later also from a range of other animal species, including companion
animals and wild small mammals [15–19]. ThismecC gene shows 69% nucleotide- and 63%
amino acid sequence identity tomecA resp. PBP2a of S. aureus N315. Similar tomecA, it was
the suspect thatmecC also originated from coagulase-negative staphylococci (CNS). The recent
findings of two furthermecC allotypes in CNS denominated asmecC1 (S. xylosus, cattle) and
mecC2 (S. saprophyticus, common shrew) may support this hypothesis [20,21]. In addition, a
further study identified themecC gene in a CNS isolate from an Eurasian lynx which is most
probably Staphylococcus stepanovicii [22], a species that is considered as a persistent member
of physiological microflora of the skin of wild small mammals [23]. Here we report the charac-
terization of the methicillin resistance encoding region in a S. stepanovicii isolate (IMT28705;
ODD4) harboring amecC gene. According to the definition of the IWG-SCC [14], the region
was denominated as ψSCCmecIMT28705. ThemecC-negative S. stepanovicii type strain
CCM7717[24] was included to compare the genomic arrangement of the two regions down-
stream of attBSCC.
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Material and Methods
The Staphylococcus stepanovicii strain IMT28705 (ODD4) was isolated in August 2011 from a
fecal sample of a live-trapped male bank vole (Myodes glareolus) of 26 g weight, collected dur-
ing October 2011 at forest monitoring site #1 in Jeeser, Mecklenburg-Western Pomerania,
North-East Germany [25], as part of a screening study focusing on pathogens from wild
rodents in Germany (Network “Rodent-Borne Pathogens” [26]. The rodent trapping was
approved by the competent authority of the Federal State of Mecklenburg-Western Pomerania,
Germany, on the basis of national and European legislation (LALLF-M-V/TSD/7221.3-030/
09). Rectal swabs were enriched by use of an enrichment broth to enhance staphylococcal
growth and to prevent Gram-negative overgrowth [27]. A positive PCR-result for themecC
gene using the primers published by Cuny et al. [15] was the initial reason for sequencing the
whole genome of themecC-positive strain (IMT28705) on a HiSeq (Illumina, USA). To gain
deeper insights into the genomic region downstream of attBSCC within this staphylococcal
species, we included themecC-negative S. stepanovicii type strain (CCM7717) [24]. The reads
were assembled using CLC Genomics Workbench 7.5 (CLC bio, Denmark) and open reading
frames (ORFs) were predicted using Prodigal: Prokaryotic Dynamic Programming Genefind-
ing Algorithm [28]. Annotation of ORFs and prediction of (protein) coding sequences (CDS)
was performed by The RAST Server: rapid annotations using subsystems technology [29].
Putative CDS function and conserved domains were predicted with blastn and blastx using the
NCBI database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The presence of sequence homology to
proteins encoded by diverse families of transposable elements in the genomes was performed
by PSI-Blast within the TransposonPSI tool (http://transposonpsi.sourceforge.net/). For geno-
mic comparative analyses Geneious 7.1.5 was employed. Putative integration site sequences
were identified as DR using the following screening sequence: GAA[AG][CG][TA]TATCA
TAA[GA].

Both S. stepanovicii isolates were subjected to disc diffusion test using cefoxitin (30 μg)
according to CLSI standards [30,31]. Automated determination of minimum inhibitory con-
centrations (MIC) for both S. stepanovicii isolates was performed using the bioMerieux
VITEK12 system according to the manufacturer’s instructions, including benzyl-penicillin,
oxacillin, gentamicin, enrofloxacin, marbofloxacin, erythromycin, clindamycin, tetracycline,
chloramphenicol and trimethoprim-sulfamethoxazole according to the Clinical and Labora-
tory Standards Institute.

Results and Discussion
Species identity of IMT28705 was determined by 16S rDNA sequence analysis (GenBank
accession no. KR732655), revealing a homology of 99.9% with the type strain CCM7717. Here
we report on the entire nucleotide sequence region between the rRNA-methyltransferase
(orfX)-like gene and the tRNA dihydrouridine synthase B (orfY)-like gene in amecC-positive
strain (IMT28705, GenBank accession no. KR732654) and themecC-negative reference strain
(CCM7717, GenBank accession no. KR732653). Genome sequencing revealed that strain
IMT28705 harbors amecC gene which shares 99.2% nucleotide (and 98.5% amino acid)
sequence identity withmecC of MRSA_LGA251. At the chromosomal insertion site of
SCCmec, five terminal amino acids were encoded by 15 bp, followed by a stop codon sequence
(TGA). Insertion of SCCmec alters this site to attR1 or DR1. In IMT28705, the attR1 integra-
tion site at the end of the rRNA-methyltransferase (orfX)-like gene is indicated by GAAAGTT
ATCATAAATGA (DR1) encoding the terminal amino acids ESYHK. Corresponding DRs are
located 8,884 bp (DR2: GAAGCATATCATAAATGA, encoding EAYHK) as well as 13,757 bp
(DR3: GAAAGTTATCATAAGTGA, encoding again ESYHK) downstream of DR1 (Fig 1). These
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DRs are analogues sequences to those reported for other SCCmec elements, including those
reported for MRSA [11,32], indicating a broad and general exchangeability of genomic regions
flanked by these universal distributed DR sequences downstream of attBSCC, at least among
staphylococci. Furthermore, these DR sequences were also detected as partitioning sequences
in prototype strain CCM7717, starting with the terminal EAYHK-encoded motif within the
rRNA-methyltransferase (orfX)-like gene (Fig 2).

In IMT28705, themecC-encoding region follows directly the attR1 (DR1) integration site
with a very short (25 bp) J-region. Immediately downstream follows the typical blaZ-mecC-
mecR1-mecI structure of 5,163 bp corresponding to the class Emec complex described for
MRSA_LG251, S. xylosus (S04009) and S. sciuri ssp. carnaticus [16,20,33] (Fig 1). A similar
structure (includingmecB instead of differentmecC allotypes) was reported forMacrococcus
caseolyticus (a Gram-positive species that was formerly classified as Staphylococcus caseolyti-
cus), either as part of a transposon located on plasmids or within an SCCmec element [34]. A
comparative analysis of thesemec-encoding regions includingM. caseolyticus is provided in
Table 1.

Fig 1. Comparison of the genetic structure of the region downstream of orfX-like gene (rRNA-
methyltransferase) for S. stepanovicii strain IMT28705 with MRSA_LGA251, S. sciuri ssp.
carnaticus_GVGS2, and S. xylosus_SO4009. Direct repeats (DR) of IMT28705 are indicated by red
arrowheads. Conserved DNA regions are shown by dark green color; more dissimilar sequences are
indicated with light green. Arrows indicate ORFs and their orientation on the genome. Selected ORFs were
colored to illustrate orthologs between the genomes. Nucleotide sequence similarities for IMT28705 are
given in Table 1.

doi:10.1371/journal.pone.0147150.g001

Fig 2. Genomic comparison of the DNA sequences between orfX (rRNA-methyltransferase-like gene)
and the orfY-like gene of the S. stepanovicii strains IMT28705 (mecC-positive) with CCM7717 (mecC-
negative). Direct repeats (DR) are indicated by red arrowheads, conserved DNA regions are shown by dark
green color; more dissimilar sequences are indicated with light green. A remarkable divergence in the
genomic structure downstream of the bacterial chromosomal attachment site (attB) is obvious, indicating a
genomic “hot spot” for integration and excision of foreign DNA in S. stepanovicii. In addition, a blastn search
(12/2014) revealed an absolutely low degree of nucleotide sequence similarities for this region of CCM7717
(S1 Table).

doi:10.1371/journal.pone.0147150.g002
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It has been assumed that the initial formation of themec complex is a result of the integra-
tion of a (putative chromosomal)mec allotype in an intact beta-lactamase operon blaZ-(mecA)-
blaR1-blaI followed by the loss of the native beta-lactamase-encoding blaZ over time [34,35].
Furthermore, the blaZ regulator genes blaR1 and blaI influence the expression levels regulated
bymecR1 andmecI (“cross-talk”) ofmecA in methicillin resistant staphylococci, too [5]. From
an evolutionary perspective, themec E with its “ancestral” blaZ is an interesting phenomenon:
This structure is either more conserved than comparable progenitor forms of othermec com-
plexes harboringmecA allotypes and/or benefits from the potential antimicrobial activity of
blaZ. The penicillin resistance noticed for an oxacillin susceptible S. xylosus strain harboring a
truncatedmecC1 within itsmec E complex might be an example for the latter case [20]. Con-
trariwise,mecCMRSA strains did not express elevated beta-lactamase activity levels so far [6].

For the S. stepanovicii strains reported here, the disc diffusion test showed an inhibition
zone diameter of 22 mm for cefoxitin for IMT28705 (= methicillin resistant phenotype), the
mecC-negative strain (CCM7717) exhibited 29 mm (= susceptible phenotype) according to the
utilized interpretation criteria [30]. As presented in Table 2, the oxacillin MICs for both the
mecC-negative S. stepanovicii strain and themecC-positive strain IMT28705 were�4 mg/L.
However, increased oxacillin MICs for CNS lackingmecA ormecC as well as unusual beta-lac-
tamase (hyper-) production were reported before, especially for isolates from bovine milk sam-
ples [36,37]. Moreover, Skov et al. reported in 2014 that cefoxitin is more reliable than oxacillin
formecC-associated methicillin resistance in S. aureus [38].

No major differences were seen in MICs for the other antibiotics tested (Table 2).
In IMT28705, the region between the orfX and orfY-like genes does not harbor a known

transposable element, neither as a full ORF nor as a truncated remnant (Table 3 and Fig 1). In
addition, no ccr homologues were identified. Thus, themecC region in IMT28705 seems to
lack factors associated with potential mobility of an SCCmec element. We therefore propose to
denominate the region between DR1 and DR2 (8,884 bp) lacking ccr genes as
ψSCCmecIMT28705 (Fig 1), according to the definition provided by the IWG-SCC [14].

Downstream of the class Emec complex, the damage inducible gene G (dinG) of the S. stepa-
novicii strain IMT28705 shares 96% nucleotide sequence identity with the corresponding
homologue of MRSA_LGA251 (Fig 1, Table 3). The dinG encoded protein represents a fusion

Table 2. Results of minimum inhibitory concentration (MIC) testing of S. stepanovicii isolates using
VITEK12.

Antimicrobial substance IMT28705 CM7717

benzyl-penicillin � 0.5 0.12

oxacillin � 4 � 4

gentamicin � 0.5 � 0.5

enrofloxacin � 0.5 � 0.5

marbofloxacin 1 � 0,5

erythromycin � 0.25 � 0.25

clindamycin � 0.25 � 0.25

tetracycline � 1 � 1

chloramphenicol 8 8

trimethoprim-sulfamethoxazole � 10 � 10

Cefoxitin-Screen + -

Inducible clindamycin resistance - -

Bold = resistant according to Vet01-S2 [30].

doi:10.1371/journal.pone.0147150.t002
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Table 3. Nucleotide sequence similarities downstream of rlmH (formerly orfX) to orfY-like genes (gb KR732654) of the bank vole-derivedmecC-
positive S. stepanovicii strain IMT28705 and other bacterial strains taken from GenBank entries.

ORF Description / presumptive function from* to* bp C NI Accession
no.

Species (gene location), strain

1 LSU m3Psi1915 methyltransferase RlmH
(orfX-like)

219 698 480 100% 87% HG515014.1 S. sciuri ssp. carnaticus, GVGS2

ψSCCmecIMT28705 1,039 9,453 8,884

2 Beta-lactamase (EC 3.5.2.6) 1,039 1,890 852 100% 98% HG515014.1 S. sciuri ssp. carnaticus, GVGS2

3 Penicillin-binding protein PBP2a,
transpeptidase

1,984 3,978 1,995 100% 99% FR821779.1 S. aureus (SCCmec),
MRSA_LGA251

4 Methicillin resistance regulatory sensor-
transducer MecR1

4,100 5,833 1,734 100% 97% HE993884.1 S. xylosus (SCCmec), HE993884

5 Methicillin resistance repressor MecI 5,830 6,207 378 100% 99% HE993884.1 S. xylosus (SCCmec), HE993884

6 hypothetical protein 1 6,403 6,543 141 69% 91% FR821779.1 S. aureus (SCCmec),
MRSA_LGA251

7 DinG family ATP-dependent helicase YoaA 6,649 8,580 1,932 100% 96% FR821779.1 S. aureus (SCCmec),
MRSA_LGA251

8 putative membrane protein 8,674 9,453 780 100% 99% FR821779.1 S. aureus (SCCmec),MRSA_
LGA251

Region between DR2 and DR3 9,580 14,455 4,875

9 PhnB, putative ribosomal methyltransferase 9,701 10,129 429 100% 93% KF527883.1 S. aureus, (SCCmec), NTUH-4729

10 hypothetical protein (transcriptional regulator
DeoR family)

10,208 10,411 204 98% 93% HG515014.1 S. sciuri ssp. carnaticus, (SCCmec),
GVGS2

11 hypothetical protein (transcriptional regulator
DeoR family)

10,439 10,582 144 97% 100% |HG515014.1 S. sciuri ssp. carnaticus, (SCCmec),
GVGS3

12 hypothetical protein 10,643 10,783 141 no similarities

13 hypothetical protein 10,764 10,940 177 no similarities

14 hypothetical protein 11,181 11,756 576 88% 72% CP002439.1 S. pseudintermedius, (SCCmec),
HKU10-03

15 conserved hypothetical protein 11,939 12,565 627 100% 89% AB498756.1 M. caseolyticus, (mecB region),
JCSC7096

16 putative glucose-1-phosphate
adenylyltransferase GlgD

12,543 13,265 723 100% 96% AB498757.1 M. caseolyticus, (mecB region),
JCSC7528

17 putative serine/threonine-specific protein
phosphatase 21

13,296 13,904 609 no similarities

18 hypothetical protein 13,930 14,343 414 100% 87% AB261975.1 S. aureus (J1 region, SCCmec),
RN7170

Region between DR3 and orfY-like gene 14,456 18,645 4,189

19 hypothetical protein 14,577 14,975 399 no similarities

20 hypothetical protein 15,071 15,316 246 no similarities

21 hypothetical protein 15,391 16,866 1,476 46% 66% HE980450.1 S. aureus,(SCCmec), M06/0171

22 hypothetical protein 17,323 17,928 606 92% 69% CP006044.1 S. aureus (SCCmec), CA-347

23 putative acetyltransferase (GNAT) family
protein

18,083 18,556 474 85% 76% CP007447.1 S. aureus (SCCmec), XN108

24 probable tRNA-dihydrouridine synthase (orfY-
like)

18,645 19,625 981 98% 85% FR821777.2 S. aureus (SCCmec), MSHR1132

Abbreviations: ORF: open reading frame, bp: base pair, C: Coverage; NI: nucleotide similarity; DR: direct repeat of 15 bp
1 predicted by use of blastx;

* nucleotide position in ψSCCmecIMT28705 (GenBank accession no. KR732654)

doi:10.1371/journal.pone.0147150.t003
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between a helicase and a nuclease often working together in the processes involved in DNA
repair and recombination [39], a function providing a potential benefit in regions associated
with recombination events. The last ORF (780 bp) comprised by ψSCCmecIMT28705 shows 96%
nucleotide sequence identity to a hypothetical membrane protein (SARLGA251_00430) of
MRSA_LGA251, lacking putative conserved regions (Table 3). Insertion sequences (IS) and
transposons (Tn), frequently associated with SCCmec elements such as IS431, IS1272 or Tn554
were not identified. A second region comprising 4,876 bp in IMT28705 is flanked by DR2 and
DR3 and starts with an ORF (429 bp) encoding a putative PhnB-like protein, which was
reported for SCCmecV elements of Indian origin only recently, including structural folds simi-
lar to bleomycin resistance protein [40]. Next, two putative transcriptional regulators (DeoR
family) also present in S. sciuri ssp. carnaticus_GVGS2, (Table 3) as well as in many other
staphylococci, are part of the region downstream of orfX (data not shown). Two further ORFs
providing no significant similarities in the NCBI nucleotide / protein databases were followed
by a coding region for a hypothetical protein also present in the SCCmec element of S. pseudin-
termedius strain HKU-1003. These are adjacent to sequences encoding a conserved hypotheti-
cal protein and a putative glucose-1-phosphate adenylyltransferase, both reported for themecB
ecoding region inM. caseolyticus. The next ORFs encode a putative serine/threonine-specific
protein phosphatase (predicted by use of blastx) and a further hypothetical protein also
described for the J1 region in MRSA strain RN71170 (Table 3).

The third region flanked by DR3 and the orfY-like gene comprises 4,171 bp and at least six
distinct ORFs. Notably, a search on the EMBL database for sequences of this region (between
bp positions 14,577 and 16,866) showed only a few hits and a very low nucleotide sequence
similarity (date: 12/2014) by use of blastn (Table 3). An arsenic resistance operon described for
the SCCmec region of MRSA_LGA251 is located 35 kb downstream of the orfY-like gene in
IMT28705. A similar operon is reported for S. xylosus_S04009 (Fig 1).

ThemecC-negative reference strain (CCM7717) showed DR1 sequence GAAGCATATCA
TAAATAA at the 3’ end of the rRNA-methyltransferase (orfX-like) gene, followed by a region
of 9,527 bp ending with DR2 (GAAAGTTATCATAAGTAA) and a further part consisting of
4,057 bp ending with DR3 (GAAAGTTATCATAAGTGA). As displayed in Fig 2, the gene content
of this region differs remarkably from that of IMT28705. However, a type I restriction modifi-
cation system (5,885 bp) consisting of hsdR, hsdS and hsdM is present downstream of orfX in
CCM7717, showing significant nucleotide sequence similarities (coverage: 82%; identity 89%)
with the homologous region in MRSA_LGA251 (S1 Table). This particular restriction modifi-
cation system was described for SCCmecV and has been discussed as a stabilizing factor for
these elements [10,32]. A further blastn search of the entire region downstream of DR1 in
CCM7717 revealed some sequence similarities to ORFs with predominantly unknown func-
tions within other staphylococci (especially in different SCCmec elements), but for seven ORFs
the entered sequence data provided no significant hits or similarities so far (01/2015, S1 Table).

In recent years, it has been assumed that the methicillin resistance conferring PBP2a
encoded by allotypes ofmecA andmecC originates from CNS including the S. sciuri group,
Staphylococcus fleurettii and other CNS [13,41,42]. The identification of the origin of genes
encoding methicillin resistance among CNS is important for understanding the evolution of
pathogenic methicillin resistant CPS and may contribute to the development of more effective
control measures [13].

Here we report about a class Emec complex and some associated ORFs with strong similari-
ties to the strains MRSA_LGA251 and S. xylosus S04009. Furthermore, the mosaic structure of
the region downstream of orfX in both S. stepanovicii strains (IMT28705 and CCM7717) is not
associated with the presence/or absence ofmecC and/or an SCCmec element. Taken together,
the orfX-like region seems to be a putative integration site of foreign DNA in S. stepanovicii,

Recombination Hot Spot in Staphylococcus stepanovicii HarboringmecC

PLOSONE | DOI:10.1371/journal.pone.0147150 January 22, 2016 8 / 12



representing a “melting pot”, like it has been described for S. aureus and other members of the
Staphylococcus genus previously [43,44]. Furthermore, a recent study revealed that the limited
distance between the region downstream of orfX (recently renamed as rlmH) and the origin of
replication (oriC) in S. aureus (38 kb in the genomes of IMT28705 and CCM7717) is a strong
predictor for a recombination hot spot [45].

However, the broad distribution of certain genes within this particular chromosomal loca-
tion in different staphylococcal species raises the question if other routes of horizontal gene
transfer beside interaction with serine recombinase family genes (ccr) might exist. For instance,
recent studies showed the general transmissibility of SCCmec elements or parts of them by dif-
ferent bacteriophages [46,47].

Whether ψSCCmecIMT28705 represents an evolutionary precursor of SCCmecXI or not is not
clear yet, but is at least a possible option, which has been discussed formecA-harboring CNS
and MRSA before [34,35,44]. Further genomic analysis of CNS originating from wildlife
(including small mammal rodents) is clearly needed to unravel the primordial origin ofmecC
(and othermec allotypes) and to answer the question where themec complex gets its mobility
from. In conclusion, our data highlight the role of the environmental and wildlife resistome as
an important source of antibiotic resistance in opportunistic and zoonotic bacterial species
such as S. aureus and the putative transferability of further factors and elements flanked by DR
downstream of attB, an important “melting pot” for genetic rearrangements.
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