415 research outputs found
The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids
The posttranslational modification of carboxy-terminal tails of tubulin plays an important role in the regulation of the microtubule cytoskeleton. Enzymes responsible for deglutamylating tubulin have been discovered within a novel family of mammalian cytosolic carboxypeptidases. The discovery of these enzymes also revealed the existence of a range of other substrates that are enzymatically deglutamylated. Only four of six mammalian cytosolic carboxypeptidases had been enzymatically characterized. Here we complete the functional characterization of this protein family by demonstrating that CCP2 and CCP3 are deglutamylases, with CCP3 being able to hydrolyze aspartic acids with similar efficiency. Deaspartylation is a novel posttranslational modification that could, in conjunction with deglutamylation, broaden the range of potential substrates that undergo carboxy-terminal processing. In addition, we show that CCP2 and CCP3 are highly regulated proteins confined to ciliated tissues. The characterization of two novel enzymes for carboxy-terminal protein modification provides novel insights into the broadness of this barely studied process
Identification of a three-gene expression signature of poor-prognosis breast carcinoma
BACKGROUND: The clinical course of breast cancer is difficult to predict on the basis of established clinical and pathological prognostic criteria. Given the genetic complexity of breast carcinomas, it is not surprising that correlations with individual genetic abnormalities have also been disappointing. The use of gene expression profiles could result in more accurate and objective prognostication. RESULTS: To this end, we used real-time quantitative RT-PCR assays to quantify the mRNA expression of a large panel (n = 47) of genes previously identified as candidate prognostic molecular markers in a series of 100 ERα-positive breast tumor samples from patients with known long-term follow-up. We identified a three-gene expression signature (BRCA2, DNMT3B and CCNE1) as an independent prognostic marker (P = 0.007 by univariate analysis; P = 0.006 by multivariate analysis). This "poor prognosis" signature was then tested on an independent panel of ERα-positive breast tumors from a well-defined cohort of 104 postmenopausal breast cancer patients treated with primary surgery followed by adjuvant tamoxifen alone: although this "poor prognosis" signature was associated with shorter relapse-free survival in univariate analysis (P = 0.029), it did not persist as an independent prognostic factor in multivariate analysis (P = 0.27). CONCLUSION: Our results confirm the value of gene expression signatures in predicting the outcome of breast cancer
Expression analysis of mitotic spindle checkpoint genes in breast carcinoma: role of NDC80/HEC1 in early breast tumorigenicity, and a two-gene signature for aneuploidy
<p>Abstract</p> <p>Background</p> <p>Aneuploidy and chromosomal instability (CIN) are common abnormalities in human cancer. Alterations of the mitotic spindle checkpoint are likely to contribute to these phenotypes, but little is known about somatic alterations of mitotic spindle checkpoint genes in breast cancer.</p> <p>Methods</p> <p>To obtain further insight into the molecular mechanisms underlying aneuploidy in breast cancer, we used real-time quantitative RT-PCR to quantify the mRNA expression of 76 selected mitotic spindle checkpoint genes in a large panel of breast tumor samples.</p> <p>Results</p> <p>The expression of 49 (64.5%) of the 76 genes was significantly dysregulated in breast tumors compared to normal breast tissues: 40 genes were upregulated and 9 were downregulated. Most of these changes in gene expression during malignant transformation were observed in epithelial cells.</p> <p>Alterations of nine of these genes, and particularly <it>NDC80</it>, were also detected in benign breast tumors, indicating that they may be involved in pre-neoplastic processes.</p> <p>We also identified a two-gene expression signature (<it>PLK1 </it>+ <it>AURKA</it>) which discriminated between DNA aneuploid and DNA diploid breast tumor samples. Interestingly, some DNA tetraploid tumor samples failed to cluster with DNA aneuploid breast tumors.</p> <p>Conclusion</p> <p>This study confirms the importance of previously characterized genes and identifies novel candidate genes that could be activated for aneuploidy to occur. Further functional analyses are required to clearly confirm the role of these new identified genes in the molecular mechanisms involved in breast cancer aneuploidy. The novel genes identified here, and/or the two-gene expression signature, might serve as diagnostic or prognostic markers and form the basis for novel therapeutic strategies.</p
The GALNT9, BNC1 and CCDC8 genes are frequently epigenetically dysregulated in breast tumours that metastasise to the brain.
Tumour metastasis to the brain is a common and deadly development in certain cancers; 18-30 % of breast tumours metastasise to the brain. The contribution that gene silencing through epigenetic mechanisms plays in these metastatic tumours is not well understood
Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration
International audienceTubulin is subject to a wide variety of posttranslational modifications, which, as part of the tubulin code, are involved in the regulation of microtubule functions. Glycylation has so far predominantly been found in motile cilia and flagella, and absence of this modification leads to ciliary disassembly. Here, we demonstrate that the correct functioning of connecting cilia of photoreceptors, which are non-motile sensory cilia, is also dependent on glycylation. In contrast to many other tissues, only one glycylase, TTLL3, is expressed in retina. Ttll3 −/− mice lack glycylation in photoreceptors, which results in shortening of connecting cilia and slow retinal degeneration. Moreover, absence of glycylation results in increased levels of tubulin glutamylation in photoreceptors, and inversely, the hyperglutamylation observed in the Purkinje cell degeneration (pcd) mouse abolishes glycylation. This suggests that both posttranslational modifications compete for modification sites, and that unbalancing the glutamylation-glycylation equilibrium on axonemes of connecting cilia, regardless of the enzymatic mechanism, invariably leads to retinal degeneration
Molecular profiling of malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1, based on large-scale real-time RT-PCR
BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a complex range of clinical symptoms. The hallmark of NF1 is the onset of heterogeneous (dermal or plexiform) benign neurofibromas. Plexiform neurofibromas can give rise to malignant peripheral nerve sheath tumors (MPNSTs), and the underlying molecular mechanisms are largely unknown. RESULTS: To obtain further insight into the molecular pathogenesis of MPNSTs, we used real-time quantitative RT-PCR to quantify the mRNA expression of 489 selected genes in MPNSTs, in comparison with plexiform neurofibromas. The expression of 28 (5.7%) of the 489 genes was significantly different between MPNSTs and plexiform neurofibromas; 16 genes were upregulated and 12 were downregulated in MPNSTs. The altered genes were mainly involved in cell proliferation (MKI67, TOP2A, CCNE2), senescence (TERT, TERC), apoptosis (BIRC5/Survivin, TP73) and extracellular matrix remodeling (MMP13, MMP9, TIMP4, ITGB4). More interestingly, other genes were involved in the Ras signaling pathway (RASSF2, HMMR/RHAMM) and the Hedgehog-Gli signaling pathway (DHH, PTCH2). Several of the down-regulated genes were Schwann cell-specific (L1CAM, MPZ, S100B, SOX10, ERBB3) or mast cell-specific (CMA1, TPSB), pointing to a depletion and/or dedifferentiation of Schwann cells and mast cells during malignant transformation of plexiform neurofibromas. CONCLUSION: These data suggest that a limited number of signaling pathways, and particularly the Hedgehog-Gli signaling pathway, may be involved in malignant transformation of plexiform neurofibromas. Some of the relevant genes or their products warrant further investigation as potential therapeutic targets in NF1
Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile
<p>Abstract</p> <p>Background</p> <p>In high grade gliomas, 1p19q codeletion and <it>EGFR </it>amplification are mutually exclusive and predictive of dramatically different outcomes. We performed a microarray gene expression study of four high grade gliomas with 1p19q codeletion and nine with <it>EGFR </it>amplification, identified by CGH-array.</p> <p>Results</p> <p>The two groups of gliomas exhibited very different gene expression profiles and were consistently distinguished by unsupervised clustering analysis. One of the most striking differences was the expression of normal brain genes by oligodendrogliomas with 1p19q codeletion. These gliomas harbored a gene expression profile that partially resembled the gene expression of normal brain samples, whereas gliomas with <it>EGFR </it>amplification expressed many genes in common with glioblastoma cancer stem cells. The differences between the two types of gliomas and the expression of neuronal genes in gliomas with 1p19q codeletion were both validated in an independent series of 16 gliomas using real-time RT-PCR with a set of 22 genes differentiating the two groups of gliomas (<it>AKR1C3</it>, <it>ATOH8</it>, <it>BMP2</it>, <it>C20orf42</it>, <it>CCNB1</it>, <it>CDK2</it>, <it>CHI3L1</it>, <it>CTTNBP2</it>, <it>DCX, EGFR, GALNT13, GBP1, IGFBP2, IQGAP1, L1CAM, NCAM1, NOG, OLIG2, PDPN, PLAT, POSTN, RNF135</it>). Immunohistochemical study of the most differentially expressed neuronal gene, alpha-internexin, clearly differentiated the two groups of gliomas, with 1p19q codeletion gliomas showing specific staining in tumor cells.</p> <p>Conclusion</p> <p>These findings provide evidence for neuronal differentiation in oligodendrogliomas with 1p19q codeletion and support the hypothesis that the cell of origin for gliomas with 1p19q codeletion could be a bi-potential progenitor cell, able to give rise to both neurons and oligodendrocytes.</p
Upregulated flotillins and sphingosine kinase 2 derail AXL vesicular traffic to promote epithelial-mesenchymal transition
Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.This work was supported by the Fondation pour la Recherche Médicale (DEQ20161136700) and the Fondation ARC pour la recherche sur le cancer (ARCPJA32020060002078). Collection of breast tumor samples was supported by the Russian Science Foundation (19-75-30016). C.G.-R. was supported by the Institut National de la Santé et de la Recherche Médicale.Peer reviewe
Neuronal Cholesterol Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts Brain Lipid Homeostasis
Impairment in cholesterol metabolism is associated with many neurodegenerative disorders including Alzheimer's disease (AD). However, the lipid alterations underlying neurodegeneration and the connection between altered cholesterol levels and AD remains not fully understood. We recently showed that cholesterol accumulation in hippocampal neurons, induced by silencing Cyp46a1 gene expression, leads to neurodegeneration with a progressive neuronal loss associated with AD-like phenotype in wild-type mice. We used a targeted and non-targeted lipidomics approach by liquid chromatography coupled to high-resolution mass spectrometry to further characterize lipid modifications associated to neurodegeneration and cholesterol accumulation induced by CYP46A1 inhibition. Hippocampus lipidome of normal mice was profiled 4 weeks after cholesterol accumulation due to Cyp46a1 gene expression down-regulation at the onset of neurodegeneration. We showed that major membrane lipids, sphingolipids and specific enzymes involved in phosphatidylcholine and sphingolipid metabolism, were rapidly increased in the hippocampus of AAV-shCYP46A1 injected mice. This lipid accumulation was associated with alterations in the lysosomal cargoe, accumulation of phagolysosomes and impairment of endosome-lysosome trafficking. Altogether, we demonstrated that inhibition of cholesterol 24-hydroxylase, key enzyme of cholesterol metabolism leads to a complex dysregulation of lipid homeostasis. Our results contribute to dissect the potential role of lipids in severe neurodegenerative diseases like AD
- …
