356 research outputs found

    Pathways for balancing CO2 emissions and sinks

    Get PDF
    Imbalance-P paper Contact with: Josep Peñuelas, [email protected] December 2015 in Paris, leaders committed to achieve global, net decarbonization of human activities before 2100. This achievement would halt and even reverse anthropogenic climate change through the net removal of carbon from the atmosphere. However, the Paris documents contain few specific prescriptions for emissions mitigation, leaving various countries to pursue their own agendas. In this analysis, we project energy and land-use emissions mitigation pathways through 2100, subject to best-available parameterization of carbon-climate feedbacks and interdependencies. We find that, barring unforeseen and transformative technological advancement, anthropogenic emissions need to peak within the next 10 years, to maintain realistic pathways to meeting the COP21 emissions and warming targets. Fossil fuel consumption will probably need to be reduced below a quarter of primary energy supply by 2100 and the allowable consumption rate drops even further if negative emissions technologies remain technologically or economically unfeasible at the global scale

    Assessing forest soil CO(2) efflux: an in situ comparison of four techniques.

    Full text link
    A dynamic, closed-chamber infrared gas analysis (IRGA) system (DC-1: CIRAS-1, PP-Systems, Hitchin, U.K.) was compared with three other systems for measuring soil CO(2) efflux: the soda lime technique (SL), the eddy correlation technique (EC), and another dynamic, closed-chamber IRGA system (DC-2: LI-6250, Li-Cor, Inc., Lincoln, NE). Among the four systems, the DC-1 systematically gave the highest flux rates. Relative to DC-1, SL, EC and DC-2 underestimated fluxes by 10, 36 and 46%, respectively. These large and systematic differences highlight uncertainties in comparing fluxes from different sites obtained with different techniques. Although the three chamber methods gave different results, the results were well correlated. The SL technique underestimated soil CO(2) fluxes compared with the DC-1 system, but both methods agreed well when the SL data were corrected for the underestimation at higher fluxes, indicating that inter-site comparisons are possible if techniques are properly crosscalibrated. The EC was the only system that was not well correlated with DC-1. Under low light conditions, EC values were similar to DC-1 estimates, but under high light conditions the EC system seriously underestimated soil fluxes. This was probably because of interference by the photosynthetic activity of a moss layer. Although below-canopy EC fluxes are not necessarily well suited for measuring soil CO(2) efflux in natural forest ecosystems, they provide valuable information about understory gas exchange when used in tandem with soil chambers

    Nutrient availability and climate as the main determinants of the ratio of biomass to NPP in woody and non-woody forest compartments

    Get PDF
    Key message: Once the effect of stand age has been taken into account, nutrient availability and climate play a crucial role in determining the B:NPPs of woody and non-woody tissues. - Abstract: Forest ecosystems accumulate large amounts of carbon in living tissues. The residence time of this carbon in the ecosystem depends largely on the turnover time of these tissues, which can be estimated as a surrogate of the ratio of biomass to net primary production (B:NPP). We used a global forest database of 310 sites containing data for biomass stocks and NPP to investigate the differences of B:NPPs among species and forest compartments and to determine B:NPPs main exogenous (mainly climate and nutrient availability) and endogenous (leaf habit and stand age) drivers. We used asymptotic exponential functions to adjust the B:NPPs of woody compartments to a theoretical stationary state to allow comparisons between forests of different ages. The B:NPPs of woody tissues (branches, stems, and coarse roots) were positively influenced by stand age, conversely to fine roots and leaves, which were weakly dependent on the age of the forest. The B:NPPs of woody tissues were positively correlated with nutrient availability, whereas fine-root B:NPPs decreased with increasing nutrient availability. The foliar B:NPP of evergreen forests was positively correlated with water deficit, and the fine-root B:NPP was correlated positively with the seasonality of precipitation and with annual thermal amplitude but negatively with water deficit. Our results support the influence of climate on the B:NPPs of non-woody compartments and identify nutrient availability as the main influence on the B:NPPs of woody tissues

    Towards a representation of priming on soil carbon decomposition in the global land biosphere model ORCHIDEE (version 1.9.5.2)

    Get PDF
    Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first-order kinetics. We then compared the PRIM model and the standard first-order decay model incorporated into the global land biosphere model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems). A test of both models was performed at ecosystem scale using litter manipulation experiments from five sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE-PRIM could simulate the observed priming (R² = 0.54)in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the priming of litter and soil organic matter

    Strong resilience of soil respiration components to drought-induced die-off resulting in forest secondary succession

    Get PDF
    How forests cope with drought-induced perturbations and how the dependence of soil respiration on environmental and biological drivers is affected in a warming and drying context are becoming key questions. The aims of this study were to determine whether drought-induced die-off and forest succession were reflected in soil respiration and its components and to determine the influence of climate on the soil respiration components. We used the mesh exclusion method to study seasonal variations in soil respiration (R S) and its components: heterotrophic (R H) and autotrophic (R A) [further split into fine root (R R) and mycorrhizal respiration (R M)] in a mixed Mediterranean forest where Scots pine (Pinus sylvestris L.) is undergoing a drought-induced die-off and is being replaced by holm oak (Quercus ilex L.). Drought-induced pine die-off was not reflected in R S nor in its components, which denotes a high functional resilience of the plant and soil system to pine die-off. However, the succession from Scots pine to holm oak resulted in a reduction of R H and thus in an important decrease of total respiration (R S was 36 % lower in holm oaks than in non-defoliated pines). Furthermore, R S and all its components were strongly regulated by soil water content-and-temperature interaction. Since Scots pine die-off and Quercus species colonization seems to be widely occurring at the driest limit of the Scots pine distribution, the functional resilience of the soil system over die-off and the decrease of R S from Scots pine to holm oak could have direct consequences for the C balance of these ecosystems

    Carbon and water vapor fluxes over four forests in two contrasting climatic zones

    Get PDF
    AbstractThe inter- and seasonal patterns of water vapor and canopy carbon fluxes were compared for four forest ecosystems in two contrasting climatic zones in Europe. The eddy covariance and ancillary data were taken from the Carboeurope and FLUXNET databases and a linear modeling statistical analysis was made. The four sites were a high-density poplar (Populus spp.) short rotation coppice plantation (in Lochristi, Belgium) and a mature Scots pine (Pinus sylvestris) forest (in Brasschaat, Belgium) in the Temperate climate versus a fast-growing Eucalypt (Eucalyptus) plantation (in Espirra, Portugal) and a Holm oak (Quercus ilex) forest (in Puechabon, France) in the Mediterranean climate.•The Eucalypt stand showed an efficient stomatal control in response to changes in vapor pressure deficit (VPD), suggesting an ideal adaptation of this species to the severe Mediterranean climate.•The fast-growing poplar stand did not show a similar stomatal control under conditions of moderate water stress. But during an intensive dry period a decrease in the development of the leaf area index (LAI) was observed.•The Holm oak stand showed a low GPP, which is typical for a low productive species with a long rotation cycle. The GPP showed low diurnal variability, even under high solar radiation. This behavior suggested a strong stomatal control caused by the severe water stress, a mechanism that allowed this stand to cope with diurnal and seasonal water deficits.•The mature Scots pine forest in the Temperate climate showed no variation in the GPP – radiation relationship. In this forest no water stress was observed, probably because the trees always had access to the water table. Irrespective of the climate the evapotranspiration of the Scots pine forest presented a tight coupling with the atmosphere, i.e. a low decoupling factor, Ω, comparable with the Holm oak and the Eucalypt forests.The high Ω values of the young poplar plantation were not typical for forest canopies. These values confirmed the strong influence of solar radiation and available energy on evapotranspiration and on the dynamics of this fast-developing canopy. At all four sites the forests showed their capacity to react to the environmental drivers, characteristic from their respective climatic types. However, drastic climatic changes – such as heat waves or long drought spells – may compromise the productivity of fast-growing plantations such as the Eucalypt and poplar stands. The response of the poplars to these events is mainly achieved through LAI control in contrast to the stomatal control in the Eucalypts

    European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling

    Get PDF
    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models

    Microbial carbon limitation : the need for integrating microorganisms into our understanding of ecosystem carbon cycling

    Get PDF
    Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant-centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be 'limited' by nutrients or carbon alone. Here, we outline how models aimed at predicting non-steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant-microbe interactions in coupled carbon and nutrient models

    Negative erosion and negative emissions : Combining multiple land-based carbon dioxide removal techniques to rebuild fertile topsoils and enhance food production

    Get PDF
    Funding Information: This research was supported by the Research Foundation—Flanders (FWO) and by the European Commissions (H2020 FET-open project Super Bio-Accelerated Mineral weathering: A new climate risk hedging reactor technology—“BAM”). JS was supported by Spanish Government Project PID2020115770RB-I. Publisher Copyright: Copyright © 2022 Janssens, Roobroeck, Sardans, Obersteiner, Peñuelas, Richter, Smith, Verbruggen and Vicca.Peer reviewedPublisher PD

    Daylength helps temperate deciduous trees to leaf-out at the optimal time

    Get PDF
    Global warming has led to substantially earlier spring leaf-out in temperate-zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf-out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf-out in all studied species. In warm springs when leaf-out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming-induced advancement of leaf-out and protects the tree against precocious leaf-out and the associated risks of late frosts. In contrast, longer-than-average daylength (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out, ensuring that trees do not leaf-out too late and miss out on large amounts of solar energy. These results provide the first large-scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf-out phenology in temperate deciduous trees
    corecore