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Abstract 22 

Forest ecosystems accumulate large amounts of carbon in living tissues. The residence time of 23 

this carbon in the ecosystem depends largely on the turnover time of these tissues, which can be 24 

estimated as a surrogate of the ratio of biomass to net primary production (B:NPP). We used a 25 

global forest database of 310 sites containing data for biomass stocks and NPP to investigate the 26 

differences of B:NPPs among species and forest compartments and to determine B:NPPs main 27 

exogenous (mainly climate and nutrient availability) and endogenous (leaf habit and stand age) 28 

drivers. We used asymptotic exponential functions to adjust the B:NPPs of woody compartments 29 

to a theoretical stationary state to allow comparisons between forests of different ages. The 30 

B:NPPs of woody tissues (branches, stems, and coarse roots) were positively influenced by 31 

stand age, conversely to fine roots and leaves, which were weakly dependent on the age of the 32 

forest. The B:NPPs of woody tissues were positively correlated with nutrient availability, whereas 33 

fine-root B:NPPs decreased with increasing nutrient availability. The foliar B:NPP of evergreen 34 

forests was positively correlated with water deficit, and the fine-root B:NPP was correlated 35 

positively with the seasonality of precipitation and with annual thermal amplitude but negatively 36 

with water deficit. Our results support the influence of climate on the B:NPPs of non-woody 37 

compartments and identify nutrient availability as the main influence on the B:NPPs of woody 38 

tissues.  39 

 40 

Keywords: turnover, residence time, nutrient availability, climate, stationary state, carbon 41 

sequestration  42 
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1. Introduction 43 

Forest ecosystems accumulate and sequester large amounts of carbon, both as living tissues 44 

and as soil organic matter (Dixon et al. 1994; Myneni et al. 2001; Pan et al. 2011). The expected 45 

duration of a carbon atom in an ecosystem, however, strongly depends on the compartment of 46 

the forest to which the atom was allocated (e.g. foliage, stems, roots; Luo et al. 2003; Zhang et al. 47 

2010). To evaluate this duration, ecologists often use the term “turnover time” as the inverse of 48 

“turnover rate” as defined by Margalef (1974). The study of turnover times of compartments is of 49 

paramount importance not only to determine the duration of carbon sequestration in the living 50 

biomass of an ecosystem, and therefore to properly assess carbon sequestration, but also to 51 

provide a better understanding of carbon and nutrient cycling in forests.  52 

The turnover time of carbon, also termed mean residence time, indicates the average time that a 53 

carbon atom remains in its initial ecosystem compartment under the assumption of stationarity: 54 

the condition for which input (biomass production) equal output (necromass production) (i.e. 55 

biomass does not accumulate in the system). This assumption, however, is rarely realised 56 

(except for foliage and fine roots), so the study of turnover times has usually been based on 57 

modelling (Dewar 1991; Kicklighter et al. 1999; Barrett 2002; Luo et al. 2003; Karlberg et al. 2006; 58 

Zhang et al. 2010) rather than on empirical data. In this sense, the ratio of biomass to net primary 59 

production (B:NPP) may serve as a useful surrogate of the turnover times under determined 60 

conditions (stationarity or pseudo-stationarity).  61 

Extensive research has focused on the B:NPPs of foliage (Reich et al. 1992; Aerts 1995; Wright 62 

and Westoby 2003) and fine roots (Dahlman and Kucera 1965; Nadelhoffer 2000; Gill and 63 

Jackson 2000; Majdi et al. 2005), but very few studies have analysed other living compartments 64 

such as branches, stems, or coarse roots, and, to the best of our knowledge, no single study has 65 

yet synthesised the turnover times of all compartments in concert. 66 

The factors controlling the variability of B:NPPs of different compartments in forests under various 67 

environmental conditions (e.g. climate and nutrient availability) and endogenous characteristics 68 
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(e.g. stand age and leaf habit) remain undetermined. Detecting the potential controls of B:NPPs 69 

of different compartments may help to predict the fate of carbon in different types of forests.  70 

Endogenous factors such as stand age and leaf habit or type, combined with exogenous factors 71 

such as climate, nutrient availability, or management, can influence B:NPPs in different ways in 72 

different forest compartments. Nutrient-rich forests tend to have lower B:NPPs than nutrient-poor 73 

forests (Jordan and Herrera 1981) because of a higher biomass production, but this relationship 74 

has only been tested for foliage and fine roots (Reich et al. 1992; Aerts 1995; Ryser 1996). 75 

Nutrient-rich forests typically allocate a larger proportion of their photosynthates to aboveground 76 

biomass compared to nutrient-poor forests (Litton et al. 2007; LeBauer and Treseder 2008; Vicca 77 

et al. 2012; Fernández-Martínez et al. 2014a), and the ultimate effect of nutrient availability on 78 

carbon sequestration in ecosystems thus depends on the concerted response of the turnover 79 

times of the various plant organs and on the allocation strategy. Changes in carbon allocation 80 

may also lead to differences in carbon stocks in aboveground versus belowground compartments, 81 

depending on nutrient availability, and therefore to contrasting relationships between B:NPP and 82 

nutrient richness for aboveground versus belowground compartments. If these mechanisms were 83 

real, we would expect the relationship between B:NPP and higher nutrient availability to be 84 

positive in aboveground compartments and negative in belowground compartments.  85 

The aim of this study was to calculate the B:NPPs of five compartments (foliage, branches, stems, 86 

coarse roots, and fine roots) of forest ecosystems around the world and to explore the 87 

endogenous (stand age and leaf habit and type) and exogenous (climate and management) 88 

factors that control them. We also particularly investigated the role of nutrient availability as a 89 

likely control of B:NPP.  90 

2. Materials and Methods  91 

2.1. Data collection 92 

2.1.1 Global forest database 93 
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We updated and analysed a global forest database (Luyssaert et al. 2007) containing data from 94 

1990 to 2012 for NPP and stand biomass for five forest compartments (foliage, branches, stems, 95 

coarse roots, and fine roots [diameter ≤2 mm]) from 310 sites around the world comprising boreal, 96 

temperate, Mediterranean, and tropical biomes, albeit the tropical and Mediterranean forests 97 

were less well represented. Only 80 of the forests provided the necessary data to calculate 98 

B:NPP for at least one of the compartments. The database also included descriptive information 99 

of the forests, such as stand age, leaf type (needleleaved, broadleaved, or mixed forest), leaf 100 

habit (evergreen, deciduous, or mixed forest), type of management (managed or unmanaged 101 

forests), and nutrient availability (see Fernández-Martínez et al., 2014; Vicca et al., 2012), which 102 

we used to calculate a proxy of nutrient richness (see section 2.2.3).  103 

2.1.2 Climatic data 104 

We extracted climatic data for our forests from the WorldClim database (Hijmans et al. 2005). 105 

This database provides suitable climatic data with a high spatial resolution (30 arc seconds, ca. 1 106 

km at the equator) and contains robust mean monthly climatic data derived from a lengthy time 107 

series (1950 to 2000), including monthly temperature and precipitation and several other climatic 108 

variables such as annual thermal amplitude and seasonality of precipitation.  109 

The time series for evapotranspiration (MOD16A2) from MODIS (Moderate Resolution Imaging 110 

Spectroradiometer) were downloaded for the period between 1 January 2000 and 27 December 111 

2009 to obtain climatic proxies of potential and actual evapotranspiration (PET and AET, 112 

respectively). We downloaded the data with a resolution of 9 km2 (3 × 3 km) around the central 113 

coordinates.  114 

2.2. Data analyses 115 

2.2.1 B:NPPs 116 

We calculated B:NPP similar to previous studies (Dahlman and Kucera 1965; Margalef 1974; 117 

Malhi et al. 1999; Gill and Jackson 2000), dividing stand biomass by mean NPP for each 118 
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compartment. The availability of NPP and biomass data was uneven for the compartments, so we 119 

calculated B:NPP for foliage, branches, stems, and coarse and fine roots from 71, 44, 44, 70, and 120 

80 forests, respectively. 121 

Stand biomass was strongly age-dependent in non-stationary compartments such as branches, 122 

stems, and coarse roots (Figure S1) (in contrast to foliage and fine roots). Previous studies have 123 

suggested a strong relationship between NPP and stand age (Carey et al. 2001 and references 124 

therein), but our data showed no clear trend with stand age (Figure S2). Nonetheless, comparing 125 

the biomasses or B:NPPs of forests of differing average stand ages (and thus biomasses) would 126 

be nonsensical for woody compartments. We avoided this problem and compared forests of 127 

different ages by adjusting the biomasses and B:NPPs of branches, stems, and coarse roots to 128 

their theoretical stationary state (at approximately 200 years of age, assumed to be when the 129 

percent annual increase in biomass and B:NPP from most compartments was <0.5%). We thus 130 

removed fast-growing species (e.g. Acer sp., Alnus sp., Betula sp., and Populus sp.) from the 131 

analyses. We calculated the stationary B:NPP by first fitting our data to an asymptotic exponential 132 

function, as conceptually suggested by Hougthon (2009). We then extracted the residuals of all 133 

cases and summed them to the predicted biomass or B:NPP of the function for 200 y (i.e. raw 134 

residuals + fitted B:NPP at 200 y). These adjusted values were used for regression models (see 135 

section 2.2.4) and to obtain means. The fitted value at 200 y only changed the means of the 136 

biomasses and B:NPPs, so our choice of age did not influence the significance of our results.  137 

2.2.2 Climatic predictors 138 

We used mean annual temperature (MAT) and precipitation (MAP) from the WorldClim database 139 

and calculated the length of the warm period (sum of months >5 ºC) using mean monthly 140 

temperatures. We also extracted two key climatic variables: annual thermal amplitude (mean 141 

maximum minus mean minimum temperature for the year) and seasonality of precipitation 142 

(measured as the coefficient of variation of precipitation among months).  143 
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We calculated the percentage water deficit from the MODIS evapotranspiration time series as 144 

WD = (1 – [AET/PET])*100, (Fernández-Martínez et al. 2014b) as an indicator of the intensity of 145 

water stress the forests must withstand. We thus used eight climatic predictor variables: MAT, 146 

MAP, mean temperature and precipitation for the warm period, length of the warm period, annual 147 

thermal amplitude, seasonality of precipitation, and WD.  148 

2.2.3 Assessment of nutrient availability 149 

The forest database contained information about the nutrient status of the forests for variables 150 

such as soil type, texture, pH, nitrogen and phosphorous content, nitrogen mineralisation, C:N 151 

ratio, and CEC; foliar nitrogen and phosphorous concentrations; nitrogen deposition; and the 152 

history of the stand or explicit reports of the fertility of the forests (Vicca et al. 2012; Fernández-153 

Martínez et al. 2014a), but information for all variables was not available for each site. We coded 154 

each variable into three levels of nutrient availability, high, medium, and low, following the 155 

methodology and data reported by Fernández-Martínez et al. (2014a). We then transformed each 156 

three-level factor into three dummy variables, each indicating high, medium, or low nutrient 157 

availability. We next performed a factor analysis to reduce the number of dimensions of our data 158 

set using only dummy variables indicating high and low nutrient availability. The first resulting 159 

factor (F1: nutrient richness covariate) explained 16% of the variance of the data and was 160 

correlated positively with nutrient-rich and negatively with nutrient-poor dummy variables.  161 

2.2.4 Statistical analyses 162 

We used stepwise forward regression models to correlate the B:NPPs (previously adjusted to the 163 

stationary state of 200 y) with the climatic variables (see section 2.2.2), the nutrient richness 164 

covariate (F1), management, and leaf type and habit. Predictor covariates were entered twice for 165 

selection in the models, with and without transformation to natural logarithms, to identify possible 166 

nonlinearities. The dependent variables usually required transformation to meet the assumptions 167 

of normality and homoscedasticity of the residuals. We evaluated the contribution of each 168 

predictor variable to B:NPP using the PMVD (Proportional Marginal Variance Decomposition, 169 
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(Grömping 2007)) metric of the R (R Core Team 2013) package relaimpo (Grömping 2006) as a 170 

measure of the variance explained by each predictor. We excluded variables with high collinearity 171 

from the models (variance inflation factor [VIF] >5). We also used the three levels of nutrient 172 

availability (high, medium, and low) used by Vicca et al. (2012) and Fernández-Martínez et al. 173 

(2014b) to compare means among groups. Differences among groups were tested using ANOVA 174 

tables and the Tukey HSD test for multiple comparissons.  175 

3. Results 176 

3.1. Adjusted B:NPPs across forest types 177 

A strong correlation between woody (branches, stems, and coarse roots) biomass and forest age 178 

(Figure S1) produced a strong correlation between woody B:NPPs and stand age (Figure 1). 179 

The asymptotic exponential functions indicated that branches reached a stable B:NPP of 45 y 180 

when trees were about 150 years old (Figure 1a). Stationary B:NPPs for stems and coarse roots 181 

reached 115 and 104 y, respectively, at an age of approximately 200 y (Figure 1b and c). The 182 

fitted functions between B:NPP and stand age presented a pseudo-R2 of 0.31, 0.81, and 0.73 in 183 

branches, stems, and coarse roots, respectively (Figure 1). B:NPP and stand age were not 184 

significantly correlated for fine roots or evergreen foliage (Figure 2).  185 

Stationary B:NPP did not significantly differ among biomes or leaf habits in woody compartments 186 

(ANOVA, P > 0.05) but differed significantly between leaf types for foliage and fine roots (ANOVA, 187 

P < 0.01; Table 1). Biome-averaged differences among woody fractions (branches, stems, and 188 

coarse roots), however, were large. The B:NPPs at the 20 and 80 percentiles were 21-80 y for 189 

branches, 71-171 y for stems, and 63-176 y for coarse roots. Differences among woody 190 

compartments were statistically significant for some species (Table 1). For example, Fagus 191 

sylvatica had a longer B:NPP in the stem (122 ± 19) and coarse-root (83.9 ± 18) fractions than in 192 

the branch fraction (22 ± 3, P < 0.05). This trend was also consistent for Picea abies and 193 

Pseudotsuga menziesii (P < 0.05 and P < 0.01, respectively). The B:NPPs of fine roots and 194 
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leaves ranged between 1 and 5 y, with lower B:NPPs in deciduous than evergreen forests for 195 

both fine roots and leaves (P < 0.01, Table 1). 196 

3.2. Controls of the B:NPPs 197 

Our results indicated that the various forest compartments were correlated with different 198 

endogenous and exogenous factors (Table 2). Age-adjusted B:NPP was controlled by nutrients 199 

in the compartments that accumulate biomass over long periods (branches, stems, and coarse 200 

roots). Nutrient richness explained 20, 35, 9, and 6% of the variance in the B:NPPs of branches, 201 

stems, and coarse and fine roots, respectively. Foliage B:NPP was not correlated with nutrient 202 

availability (P > 0.05, Table 2). Nutrient-rich forests had longer B:NPPs than nutrient-poor forests 203 

in woody compartments (Tukey’s test, P < 0.05; Table S2, Figure 3a, b, and c). The response of 204 

the B:NPPs of woody fractions to nutrient availability, however, differed from the response of the 205 

fine-root fraction (Table 2, Figure 4), which behaved oppositely (Table S2, Figure 3d). Forests 206 

with higher nutrient availability had longer B:NPPs in woody tissues (branches, stems, and 207 

coarse roots, Figure 4a) in comparison to nutrient-poor forests (P < 0.05), but forests with 208 

nutrient limitations had longer B:NPPs in fine roots than nutrient-rich forests (P = 0.002; Figure 209 

4b). Nutrient availability was not aligned with old or young forests (ANOVA, P > 0.1). Our results 210 

should therefore not be biased because of age differences between nutrient-rich and nutrient 211 

poor forests. Despite the possible combined effect that nutrient availability and management can 212 

have on biomass production (Campioli et al. 2015), B:NPP did not differ significantly between 213 

managed and unmanaged forests in any compartment. 214 

Carbon stocks in the biomasses of branches and stems increased with nutrient availability (Table 215 

S2, Figure 5; P < 0.05). Fine roots had the opposite trend, but the results were not statistically 216 

significant. Production (NPP) varied little (Table S2, Figure 5) among nutrient classes. The 217 

differences in B:NPP with nutrient availability were thus due to differences in stand biomass 218 

rather than to differences in NPP. 219 
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Leaf habit was responsible for the largest differences in foliage B:NPP (Table S2). Foliage B:NPP 220 

averaged approximately 1 y in deciduous forests and 4.3 ± 0.4 y in evergreen forests (Table S2). 221 

Branch B:NPP was longer in evergreen than deciduous forests (Table 2). Evergreen foliage 222 

B:NPPs were positively correlated with water deficit, and fine-root B:NPPs were higher in forests 223 

with low water stress (Table 2). The seasonality of precipitation, however, was the most 224 

(positively) correlated variable with fine-root B:NPP, explaining 58% of its variance. High values 225 

of annual thermal amplitude were also correlated with high fine-root B:NPPs. Evergreen foliage 226 

and fine-root B:NPPs were marginally positively correlated with stand age (Figure 2, Table 2). 227 

4. Discussion 228 

Our results identified large differences in B:NPPs among forest compartments but only small 229 

differences among tree species (Tables 1 and S2, Figure 3). The slow-growing species in this 230 

study may thus have similar structural and functional properties, which allowed us to compare the 231 

role of exogenous controls of B:NPP spatial variability. The B:NPPs were mostly driven by 232 

climate in non-woody tissues but by age and nutrient availability in woody tissues.  233 

4.1. The role of climate in non-woody compartments 234 

Climate played a significant role in determining the B:NPPs of non-woody compartments such as 235 

foliage and fine roots but not of branches, stems, and coarse roots. The negative correlation 236 

between foliar B:NPPs and water deficit may indicate that forests under high water stress are 237 

unable to sustain as much leaf biomass as forests with good hydric conditions, as previous 238 

studies have reported (Fernández-Martínez et al. 2014b).  239 

Fine-root B:NPPs were strongly correlated with intra-annual climatic variability (thermal amplitude 240 

and especially the seasonality of precipitation). This relationship supports previous findings, 241 

suggesting that the B:NPPs of fine roots decrease with climatic seasonality (Gill and Jackson 242 

2000). Climatic seasonality may lead to periods of extreme weather (e.g. drought or cold) during 243 

the year that may kill fine roots, thus decreasing their life span. This negative effect of seasonality 244 

may also indicate that warmer forests (with less seasonality) need a higher fine-root NPP to 245 
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sustain the same pools of fine-root biomass (Gill and Jackson 2000) due to the higher metabolic 246 

rates.  247 

In contrast to foliage and fine roots, the B:NPPs of woody tissues were not correlated with climate, 248 

perhaps because woody tissues are organs that accumulate much biomass in a very recalcitrant 249 

form and are therefore relatively insensitive to meteorological conditions. Also, the turnover of 250 

woody tissues is primarily associated with tree mortality and is therefore less sensitive to normal 251 

meteorological conditions (without considering events of extreme weather causing disturbances 252 

such as windthrows, storms, or heat waves causing mass mortality).  253 

4.2. The role of nutrient availability in woody and non-woody compartments 254 

The positive effect of nutrient availability on woody B:NPPs was driven by the larger carbon pools 255 

in nutrient-rich than in nutrient-poor forests, not by an increase in biomass production (NPP), 256 

which remained fairly constant among the classes of nutrient availability (Table S2). We can thus 257 

infer that either necromass production is higher in nutrient-poor forests or that nutrient-rich forests 258 

can sustain more living biomass than nutrient-poor forests. This finding also supports the 259 

hypothesis that nutrient-rich forests allocate larger proportions of photosynthates to wood than 260 

nutrient-poor forests (Vicca et al. 2012). Woody compartments have longer B:NPPs than non-261 

woody organs (Tables 1 and S2, Figure 3), so our findings also suggest that nutrient-rich forests 262 

are more likely to act as carbon sinks than nutrient-poor forests (Fernández-Martínez et al. 263 

2014a). Nutrient-rich forests thus accumulate more biomass, and the carbon is more likely to 264 

reside longer in the living biomass.  265 

In contrast to woody compartments, fine-root B:NPPs are shorter in nutrient-rich forests, 266 

supporting previous research suggesting that nutrient-poor forests increase the life-span of fine 267 

roots to increase nutrient-use efficiencies and thus to avoid nutrient losses (Reich et al. 1992; 268 

Aerts 1995; Ryser 1996). Foliar B:NPPs were not significantly correlated with nutrient richness, 269 

which may be linked to the hypothesised higher resorptive capacity of leaves than of fine roots 270 

(Freschet et al. 2010).  271 



 

12 
 

4.3. Methodological considerations 272 

The non-stationarity of woody compartments that we have attempted to resolve by removing the 273 

effect of stand age from our estimates of B:NPP suggests that our results should be interpreted 274 

with caution. Turnover times in leaves and fine roots could theoretically be calculated as the pool-275 

to-flux ratio, because biomass in these compartments reaches a steady state at relatively young 276 

ages (Ryan et al. 1997; Chen et al. 2007). This methodology (simple B:NPP calculation) to 277 

evaluate turnover times, however, may certainly underestimate the real average time that an 278 

amount of carbon will reside in compartments where biomass increases with time (i.e. branches, 279 

stems, and coarse roots), leading to a strong association between turnover time and age (Figure 280 

1). Biomass in woody compartments, however, tends to a steady state with age (Hougthon 2009; 281 

Fernández-Martínez et al. 2014b), so the pool-to-flux ratio might provide reliable estimates in old-282 

growth forests that have already reached a stationary state when the inputs equal the outputs 283 

(NPP – necromass production = 0). The alternative to studying only old-growth forests is to adjust 284 

the pool-to-flux ratio to a theoretical stationary state of the stands following an asymptotic function 285 

describing the increase in pool-to-flux ratio with age, which is the methodology we have chosen. 286 

By adjusting B:NPPs to the stationary state, we can provide surrogates of turnover times that 287 

should be useful to forest managers and the modelling community.  288 

5. Conclusions 289 

We detected large differences in B:NPPs among forest compartments but only small differences 290 

among tree species (Tables 1 and S2, Figure 3). Once the effect of stand age was removed for 291 

compartments without stationary behaviour (Figure. 1), nutrient availability (Figure 4) and 292 

climate (mostly water deficit and seasonality) were identified as playing crucial roles in 293 

determining the B:NPPs of woody and non-woody tissues, respectively (Table 2).  294 
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Figure captions 381 

Figure 1: Relationships of the B:NPPs of a) branches, b) stems, and c) coarse-roots with stand 382 

age. Data were fitted using an asymptotic exponential function.   383 

Figure 2: Relationships of the B:NPPs of a) foliage and b) fine roots with stand age.  384 

Figure 3: B:NPPs of a) branches, b) stems, c) coarse roots, and d) fine roots for different levels 385 

of nutrient availability. The branch, stem, and coarse-root B:NPPs have been adjusted to the 386 

stationary state (200 y) using the equations in Figure 1. Exact values can also be found in Table 387 

S2. Different letters above the bars indicate significant differences using Tukey’s HSD test for 388 

multiple comparisons at the 0.05 level.  389 

Figure 4: Relationships of the B:NPPs of (a) stems and (b) fine roots with nutrient richness. 390 

Figure 5. Stand biomass and NPP of branches, stems, coarse-roots and fine-roots for different 391 

levels of nutrient availability. The biomasses for branches, stems, and coarse roots have been 392 

adjusted to the stationary state (200 y) using an asymptotic exponential function (see Materials 393 

and Methods for further information). Exact values can also be found in Table S2. Different letters 394 

above the bars indicate significant differences using Tukey’s HSD test for multiple comparisons at 395 

the 0.05 level. 396 

  397 
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Table 1: B:NPPs (mean years ± standard error) of leaves, branches, stems, and coarse and fine 398 

roots across species and biomes adjusted to the stationary state (200 y) (except for foliage and 399 

fine roots). The number of forests is shown in parentheses. Different letters within a column 400 

indicate significant differences among groups (P < 0.05) using Tukey’s HSD test for multiple 401 

comparisons.  402 

Species Foliage  Branches  Stems  Coarse roots  Fine roots 

Cocos nucifera 2.5  (1)   
   

 
   

 
   

 
  

Fagus sylvatica 1.1 ± 0.1  (12)  21.6 ± 3.0 (5)  121.9 ± 19.2 (5)  83.9 ± 17.6 (8)  1.1 ± 0.04 (8) 

Larix gmelinii 
 

   20.9  (1)  100.2              (1)  37.0  (1)  
 
  

Picea abies 4.4 ± 0.4  (11)  31.3 ± 16.6 (5)  134.1 ± 31.1 (5)  86.1 ± 7.4 (7)  1.4 ± 0.4 (7) 

Picea mariana 9.5  (2)   
   

 
   186.7  (2)  5.5  (1) 

Pinus banksiana 2.0  (1)   
   

 
   277.9  (1)  3.4  (1) 

Pinus ponderosa 4.1 ± 0.5  (13)  99.7 ± 35.2 (12)  118.5 ± 17.9 (12)  132.5  (2)  2.0  (2) 

Pinus radiata 5.3  (1)   
   167.5                        (1)  155.5  (1)  0.7  (1) 

Pinus strobus 
 

    
   

 
   163.3   ± 18.1 (4)  

 
  

Pinus sylvestris 4.4 ± 1.1  (6)  134.7 ± 99.0    (3)  93.8 ± 23.1 (3)  124.2 ± 63.5 (3)  2.1 ± 0.6 (3) 

Pinus taeda 
 

    
   

 
   167.4  (1)  

 
  

Pseudotsuga menziesii 3.5 ± 0.5  (12)  35.8 ± 5.6 (12)  94.0 ± 14.1 (12)  85.0 ± 15.6 (12)  6.1 ± 0.6 (11) 

  
    

   
 
   

 
   

 
  

Biome 
 

    
   

 
   

 
   

 
  

Boreal evergreen 5.4 ± 1.1
a
  (9)  134.7 ± 99.9

 a
 (3)  93.8 ± 23.1

a
 (3)  172.8 ± 36.9

a
 (6)  3.0 ± 0.7

ab
  (5) 

Boreal deciduous 1.0
b 
 (2)  20.9

 a
  (1)  100.2

a
  (1)  37.0

a
  (1)  2.2

ab
  (1) 

Temperate evergreen 4.1 ± 0.3
a
  (42)  99.5 ± 22.8

 a
 (32)  139.7 ± 20.3

a
 (32)  132.5 ± 15.8

a
 (31)  3.7 ± 0.6

a
  (24) 

Temperate deciduous 1.1 ± 0.1
b
  (15)  30.2 ± 7.7

 a
 (7)  113.4 ± 14.7

a
 (7)  184.4 ± 89.8

a
 (12)  1.4 ± 0.2

b
  (12) 

 403 

  404 
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Table 2: Summary of the models for the B:NPPs of evergreen foliage, branches, stems, and coarse and fine roots using stepwise forward 405 

regressions. For these analyses, the B:NPPs of woody compartments were adjusted to 200 y using an asymptotic exponential function (see 406 

Materials and Methods). Values indicate β ± standard error, and the proportion of variance explained (in %) is shown in parentheses. For 407 

branches, stems, and coarse roots, the reported variance explained by stand age (*) is the R2 from the asymptotic exponential functions in 408 

Figure 1 and is not accounted for in the R2 of the stepwise models. All coefficients were significant at the 0.05 level except those marked with †, 409 

indicating significance at the 0.1 level, or by n.s., indicating that the term was not significant. PS, precipitation seasonality; ThA, annual thermal 410 

amplitude; WD, water deficit. Ln indicates natural-log transformation. For leaf habit, D indicates deciduous and E indicates evergreens.  411 

Stepwise regression Ln foliage 
 

Ln branches 
 

Ln stems 
 

Ln coarse roots 
 

Ln fine roots 

Leaf habit     
 

D < E (11) 
               Nutrient richness (F1) 

     
0.48 ± 0.15 (20) 

 
0.59 ± 0.15 (35) 

 
0.36 ± 0.14 (9) 

 
-0.18 ± 0.09 (6) 

PS 
                    

0.69 ± 0.08 (58) 

Ln ThA 
               

0.26 ± 0.14 (5)
†
 

 
0.25 ± 0.10 (5) 

Ln WD 0.30 ± 0.13 (8) 
                

-0.23 ± 0.09 (4) 

Ln Age 0.28 ± 0.13 (7)     (31)*     (81)*     (73)*  0.19 ± 0.08 (5) 

R
2
 

   
15 

    
31 

    
35 

    
14 

    
78 

  412 



 

19 
 

Figure 1 413 
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Figure 2 416 
 417 

 418 
  419 
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Figure 3 420 
 421 

 422 
 423 
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Figure 4   424 
 425 

 426 
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Figure 5 427 
 428 

429 
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Supplementary material 430 

Figure captions 431 

Table S1: B:NPPs (mean years ± standard error) of leaves, branches, stems, and coarse and 432 

fine roots across species and biomes. The B:NPPs were not adjusted to the stationary state. The 433 

number of forests is shown in parentheses. 434 

 435 

Species Foliage  Branches  Stems  Coarse roots  Fine roots 

Cocos nucifera 2.5  (1)   
   

 
   

 
   

 
  

Fagus sylvatica 1.1 ± 0.1  (12)  20.3 ± 3.1 (5)  87.4 ± 18.1 (5)  66.4 ± 17.2 (8)  1.1 ± 0.04 (8) 

Larix gmelinii 
 

   19.3  (1)  65.2              (1)  28.6  (1)  
 
  

Picea abies 4.4 ± 0.4  (11)  26.0 ± 17.9 (5)  42.9 ± 11.1 (5)  35.5 ± 10.8     (7)  1.4 ± 0.4 (7) 

Picea mariana 9.5  (2)   
   

 
   162.8  (2)  5.5  (1) 

Pinus banksiana 2.0  (1)   
   

 
   133.3  (1)  3.4  (1) 

Pinus ponderosa 4.1 ± 0.5  (13)  84.7 ± 37.0 (12)  62.4 ± 23.2 (12)  62.3  (2)  2.0  (2) 

Pinus radiata 5.3  (1)   
   8.2                        (1)  10.4  (1)  0.7  (1) 

Pinus strobus 
 

    
   

 
   24.1   ± 11.5 (4)  

 
  

Pinus sylvestris 4.4 ± 1.1  (6)  41.9 ± 9.7    (3)  71.0 ± 39.8 (3)  118.0 ± 67.9 (3)  2.1 ± 0.6 (3) 

Pinus taeda 
 

    
   

 
   7.6  (1)  

 
  

Pseudotsuga menziesii 3.5 ± 0.5  (12)  26.8 ± 7.2 (12)  62.8 ± 20.9 (12)  62.6 ± 20.2 (12)  6.1 ± 0.6 (11) 

  
    

   
 
   

 
   

 
  

Biomes 
 

    
   

 
   

 
   

 
  

Boreal Evergreen 5.4 ± 1.1  (9)  41.9 ± 9.7 (3)  71.0 ± 39.8 (3)  132.1 ± 35.2 (6)  3.0 ± 0.7  (5) 

Boreal Deciduous 1.0  (2)  19.3  (1)  65.2  (1)  28.6  (1)  2.2  (1) 

Temperate Evergreen 4.1 ± 0.3  (41)  66.3 ± 19.4 (32)  64.5 ± 13.8 (32)  56.2 ± 11.8 (31)  3.7 ± 0.6  (24) 

Temperate Deciduous 1.1 ± 0.1  (15)  25.8 ± 4.8 (7)  75.4 ± 15.0 (7)  81.1 ± 18.6 (12)  1.4 ± 0.2  (12) 

 436 
  437 
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Table S2: B:NPPs, biomasses, and net primary productions (NPPs) of foliage, branches, stems, 438 

and coarse and fine roots grouped by leaf type (foliage) and nutrient availability. The B:NPPs and 439 

mean biomasses of branches, stems, and coarse roots were adjusted to the theoretical stationary 440 

state (200 y, see Figure 1). N indicates the number of forests. Different letters within a column 441 

and compartment indicate differences between groups using Tukey’s test for multiple 442 

comparisons at the 0.05 level. 443 

Compartment 
 

B:NPP (years)  Biomass (gC m
-2

)  NPP (gC m
-2

 y
-1

) N 

 
Leaf habit 

 
 

 
   

 
   

Foliage Evergreen 4.3  ± 0.4
a
  499.8 ± 90.9

a
   129.6  ± 22.7

a
 53  

 
Deciduous 1.1  ± 0.1

b
  198.2  ± 22.3

b
   180.4  ± 16.7

b
 18  

   
   

 
   

 
   

 
Nutrient availability 

 
   

 
   

 
   

Branches High 295.8 ± 49.9
a
  6965.1 ± 1402.9

a
   32.7 ± 5.8

a
 4  

 
Medium 80.2 ± 42.9

b
  1918.6 ± 287.6

b
   106.4 ± 21.4

a
 7  

 
Low 60.8 ± 21.3

b
  2065.9 ± 328.3

b
   69.5  ± 11.5

a
 22  

   
  

 
   

 
   

Stems High 349.3 ± 54.3
a
   36740.9 ± 7075.4

a
   177.8  ± 12.4

ab
 4  

 
Medium 128.2 ± 14.2

b
  9085.9 ± 1063.6

b
   135.1  ± 22.5

b
 7  

 
Low 104.7 ± 12.8

b
  16902.2 ± 3555.6

b
   293.2  ± 44.6

a
 24  

   
  

 
  

 
   

Coarse roots High 294.4 ± 101.7
a
  5541.7 ± 1319.9

a
   60.8 ± 9.3

a
 8  

 
Medium 125.1 ± 13.1

b
  5426.4 ± 2343.3

a
   58.8  ± 12.4

a
 17  

 
Low 115.8 ± 18.5

b
  4360.6 ± 1088.1

a
   76.2  ± 13.8

a
 26  

   
  

 
   

 
   

Fine roots High 1.6  ± 0.2
a
  311.1 ± 27.4

a
   197.8 ± 9.5

a
 7  

 
Medium 1.5  ± 0.2

a
  274.6 ± 52.2

a
   173.6  ± 28.8

a
 11  

 Low 3.9 ± 0.7
b
  447.6 ± 69.6

a
   138.2 ± 19.0

a
 25  
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Figure S1. Relationships between biomass and stand age for branches, stems, and coarse roots. Data were fitted using an asymptotic 444 

exponential function.   445 

 446 

 447 

 448 

  449 
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Figure S2. Relationships between net primary production (NPP) and stand age for a) branches, b) stems, and c) coarse roots. Any of the 450 

fractions presented significant relationships.  451 

 452 

 453 


