489 research outputs found

    Information dynamics: patterns of expectation and surprise in the perception of music

    Get PDF
    This is a postprint of an article submitted for consideration in Connection Science © 2009 [copyright Taylor & Francis]; Connection Science is available online at:http://www.tandfonline.com/openurl?genre=article&issn=0954-0091&volume=21&issue=2-3&spage=8

    A visual programming model to implement coarse-grained DSP applications on parallel and heterogeneous clusters

    No full text
    International audienceThe digital signal processing (DSP) applications are one of the biggest consumers of computing. They process a big data volume which is represented with a high accuracy. They use complex algorithms, and must satisfy a time constraints in most of cases. In the other hand, it's necessary today to use parallel and heterogeneous architectures in order to speedup the processing, where the best examples are the su-percomputers "Tianhe-2" and "Titan" from the top500 ranking. These architectures could contain several connected nodes, where each node includes a number of generalist processor (multi-core) and a number of accelerators (many-core) to finally allows several levels of parallelism. However, for DSP programmers, it's still complicated to exploit all these parallelism levels to reach good performance for their applications. They have to design their implementation to take advantage of all heteroge-neous computing units, taking into account the architecture specifici-ties of each of them: communication model, memory management, data management, jobs scheduling and synchronization . . . etc. In the present work, we characterize DSP applications, and based on their distinctive-ness, we propose a high level visual programming model and an execution model in order to drop down their implementations and in the same time make desirable performances

    Foveated image processing for faster object detection and recognition in embedded systems using deep convolutional neural networks

    Get PDF
    Object detection and recognition algorithms using deep convolutional neural networks (CNNs) tend to be computationally intensive to implement. This presents a particular challenge for embedded systems, such as mobile robots, where the computational resources tend to be far less than for workstations. As an alternative to standard, uniformly sampled images, we propose the use of foveated image sampling here to reduce the size of images, which are faster to process in a CNN due to the reduced number of convolution operations. We evaluate object detection and recognition on the Microsoft COCO database, using foveated image sampling at different image sizes, ranging from 416×416 to 96×96 pixels, on an embedded GPU – an NVIDIA Jetson TX2 with 256 CUDA cores. The results show that it is possible to achieve a 4× speed-up in frame rates, from 3.59 FPS to 15.24 FPS, using 416×416 and 128×128 pixel images respectively. For foveated sampling, this image size reduction led to just a small decrease in recall performance in the foveal region, to 92.0% of the baseline performance with full-sized images, compared to a significant decrease to 50.1% of baseline recall performance in uniformly sampled images, demonstrating the advantage of foveated sampling

    Evidence for surprise minimization over value maximization in choice behavior

    Get PDF
    Classical economic models are predicated on the idea that the ultimate aim of choice is to maximize utility or reward. In contrast, an alternative perspective highlights the fact that adaptive behavior requires agents' to model their environment and minimize surprise about the states they frequent. We propose that choice behavior can be more accurately accounted for by surprise minimization compared to reward or utility maximization alone. Minimizing surprise makes a prediction at variance with expected utility models; namely, that in addition to attaining valuable states, agents attempt to maximize the entropy over outcomes and thus 'keep their options open'. We tested this prediction using a simple binary choice paradigm and show that human decision-making is better explained by surprise minimization compared to utility maximization. Furthermore, we replicated this entropy-seeking behavior in a control task with no explicit utilities. These findings highlight a limitation of purely economic motivations in explaining choice behavior and instead emphasize the importance of belief-based motivations

    Looking to Score: The Dissociation of Goal Influence on Eye Movement and Meta-Attentional Allocation in a Complex Dynamic Natural Scene

    Get PDF
    Several studies have reported that task instructions influence eye-movement behavior during static image observation. In contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers’ beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual attention to the items presented in the clip (e.g., ball, players, court lines, and umpire). However, before attending to the clips, observers were either told to simply watch clips (non-specific goal), or they were told to watch the clips with a view to judging which of the two tennis players was awarded the point (specific goal). The results of subjective reports suggest that observers believed that they allocated their attention more to goal-related items (e.g. court lines) if they performed the goal-specific task. However, we did not find the effect of goal specificity on major eye-movement parameters (i.e., saccadic amplitudes, inter-saccadic intervals, and gaze coherence). We conclude that the specificity of a task goal can alter observer’s beliefs about their attention allocation strategy, but such task-driven meta-attentional modulation does not necessarily correlate with eye-movement behavior

    Model based analysis of fMRI-data: Applying the sSoTS framework to the neural basic of preview search.

    Get PDF
    The current work aims to unveil the neural circuits under- lying visual search over time and space by using a model-based analysis of behavioural and fMRI data. It has been suggested by Watson and Humphreys [31] that the prioritization of new stimuli presented in our visual field can be helped by the active ignoring of old items, a process they termed visual marking. Studies using fMRI link the marking pro- cess with activation in superior parietal areas and the precuneus [4, 18, 27, 26]. Marking has been simulated previously using a neural-level ac- count of search, the spiking Search over Time and Space (sSoTS) model, which incorporates inhibitory as well as excitatory mechanisms to guide visual selection. Here we used sSoTS to help decompose the fMRI signals found in a preview search procedure, when participants search for a new target whilst ignoring old distractors. The time course of activity linked to inhibitory and excitatory processes in the model was used as a regres- sor for the fMRI data. The results showed that different neural networks were correlated with top-down excitation and top-down inhibition in the model, enabling us to fractionate brain regions previously linked to vi- sual marking. We discuss the contribution of model-based analysis for decomposing fMRI data
    • …
    corecore