20 research outputs found

    Nanostructured Polythiophene Hybrid Charge-Transfer Complexes

    Get PDF
    Este trabajo se centra en la síntesis de nuevos nanohíbridos dador-aceptor (D/A) de politiofeno solubles en medios acuosos y en la elucidación de la interacción electrónica entre las unidades D/A como en el funcionamiento de los nanohíbridos en forma de películas delgadas en aplicaciones optoelectrónicas.Utilizando técnicas de auto-ensamblaje in-situ de politiofeno en presencia de diferentes nanomateriales como son el óxido de grafeno, puntos cuánticos de semiconductores o láminas de dicalcogenuros de metales de transición se ha conseguido la formación de complejos de transferencia de carga, solubles en agua y con superiores propiedades electrónicas de relevancia para el desarrollo de dispositivos optoelectrónicos basados en películas delgadas <br /

    Thiophene-Based Trimers and Their Bioapplications: An Overview

    Get PDF
    Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.Operational Program Research, Development, and Education Project “MSCAfellow4@MUNI” (No. CZ.02.2.69/0.0/0.0/20_079/0017045) is acknowledged. The European Union is acknowledged for funding this research through Horizon 2020 MSCA-IF-2018 No 838171 (TEXTHIOL)

    Chitosan-Modified Polyethyleneimine Nanoparticles for Enhancing the Carboxylation Reaction and Plants' CO2 Uptake

    Get PDF
    Increasing plants' photosynthetic efficienc y is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthes i s is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineer-ing, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticl e s for enhancing the carbox-ylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their abi l i t y to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants t h a t can potentially increase photosynthetic efficiency and overall plants' CO2 storage

    Controlled assembly and reduction of graphene oxide networks for conductive composites

    Get PDF
    Work presented at the 2019 ACS Spring National Meeting, March 28-April 4, 2019 · Orlando, FL.Graphene has attracted enormous interest in the scientific community as the first 2D material with exceptional mechanical, electronic and thermal properties. Pristine Graphene is notoriously difficult to process for macroscale applications, to overcome this many people use graphene oxide (GO) instead. GO is water soluble and easily functionalised and so can be simply processed into various systems. GO lacks the exceptional electronic properties of graphene due to structural disorder, therefore an important area of research is on the reduction of GO, which partly restores the structure and properties of graphene. Various techniques have been developed to perform the reduction step. We report a simple approach for preparing conductive Polymer Latex-rGO composites by using a latex-assembly method. After a treatment in the oven at low T, we can reduce the GO in situ. We make use of the inherent GO properties to optimise the aqueous composite fabrication, which is scalable and adaptable, and then restore conductivity with a simple, low temperature, heating step; opening up pathways to tunable electronic composite materials on a large scale.Peer reviewe

    Explosive percolation yields highly-conductive polymer nanocomposites

    Get PDF
    Explosive percolation is an experimentally-elusive phenomenon where network connectivity coincides with onset of an additional modification of the system; materials with correlated localisation of percolating particles and emergent conductive paths can realise sharp transitions and high conductivities characteristic of the explosively-grown network. Nanocomposites present a structurally- and chemically-varied playground to realise explosive percolation in practically-applicable systems but this is yet to be exploited by design. Herein, we demonstrate composites of graphene oxide and synthetic polymer latex which form segregated networks, leading to low percolation threshold and localisation of conductive pathways. In situ reduction of the graphene oxide at temperatures of <150 °C drives chemical modification of the polymer matrix to produce species with phenolic groups, which are known crosslinking agents. This leads to conductivities exceeding those of dense-packed networks of reduced graphene oxide, illustrating the potential of explosive percolation by design to realise low-loading composites with dramatically-enhanced electrical transport properties

    Nanostructured polythiophene hybrid charge-transfer complexes

    No full text
    Tesis llevada a cabo para conseguir el grado de doctor en la Universidad de Zaragoza. 2018-12-19.[EN] This work focuses on the synthesis of novel donor-acceptor (D/A) nano hybrids of water-soluble types of polythiophene, the elucidation of the electronic interaction between the D/A units, and the performance of the nanohybrids in the form of thin film in optoelectronic applications. Using in-situ self-assembly synthesis approaches of polythiophene in the presence of different nanomaterials, such as graphene oxide, semiconducting quantum dots, and sheets of transition metal dichalcogenides the formation of water-soluble charge-transfer complexes with superior optoelectronic properties was achieved, being of relevance for the development of thin-film optoelectronic devices.[ES] Este trabajo se centra en la síntesis de nuevos nanohíbridos dador-aceptor (D/A) de politiofeno solubles en medios acuosos y en la elucidación de la interacción electrónica entre las unidades D/A como en el funcionamiento de los nanohíbridos en forma de películas delgadas en aplicaciones optoelectrónicas. Utilizando técnicas de auto-ensamblaje in-situ de politiofeno en presencia de diferentes nanomateriales como son el óxido de grafeno, puntos cuánticos de semiconductores o láminas de dicalcogenuros de metales de transición se ha conseguido la formación de complejos de transferencia de carga, solubles en agua y con superiores propiedades electrónicas de relevancia para el desarrollo de dispositivos optoelectrónicos basados en películas delgadas.This work has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 642742.Peer reviewe

    Nanostructured complexes of conducting polymers and graphene oxide

    Get PDF
    1 figure.-- Talk delivered at the 9th Nanodays Workshop on Advanced Materials, Munich (Germany), Sept. 13-15, 2017Intrinsically conducting polymers form the base for the development of plastic electronic devices and hold great promise in optoelectronic applications such as thin film organic field-effect transitors, OLEDS and solar cells. Control of morphology and aggregation states by nanostructuring is essential for improving the device performance. In the last decade, research has focused on liquid phase assembly processes. These afford conjugated polymers in the form of nanoparticles or nanowires, which are dispersible in aqueous dispersions and allow for the fabrication of thin films with well-defined characteristics from environmentally-friendly solutions. Moreover, the liquid phase self-assembly processes provide unique opportunities for the development of novel composite materials with graphene based materials [1, 2]. Here we present our results of our recent work on the development of novel composite materials based of graphene oxide and poly (3-hexylthiophene) (P3HT) [3]. We show that liquid phase assembly processes in the presence of water-soluble graphene oxide sheets lead to the formation P3HT nanoparticles (P3HTNPs) in intimate contact with surrounding sheets of graphene oxide. During the synthesis, graphene oxide acts as a >good> solvent and induces important changes on the internal aggregation structure and the related interchain coupling. At the same time, the charge-transfer properties as a function of GO concentration are modified. Both effects are intimately coupled and lead to the stabilization of of P3HTNPs-GO donor-acceptor nanostructures offering improved charge transport and charge separation characteristics in thin films.Funding by EU (Project H2020-ITN 2014 642742), Spanish MINECO (ENE2013-48816-C5-5-R) and Government of Aragon (DGA-ESF-T66), is gratefully acknowledged

    Graphene oxide and poly(3-hexylthiophene) nanoscale interface interactions probed by KPFM

    Get PDF
    Graphene oxide (GO) is a chemically modified form of graphene containing many different types of oxygen functional groups on its basal plane and edges. Their presence imparts hydrophilicity and allows for ease of processing from water dispersions. We recently have shown that sheets of graphene oxide critically affect the aggregate structure of water dispersible nanoparticles P3HTNPs and thus the performance of optoelectronic thin film devices. In this work we elucidate the photogenerated charge tranfer dynamics of (P3HTNPs-GO) ensembles with defined aggregate structure across their interface by Kelvin Probe Force microscopy (KPFM).EU Horizon 2020 research and innovation programme Marie Sklodowska-Curie grant agreement No 642742. Project ENE2016-79282-C5-1-R. Grupo Reconocido DGA T03_17R.Peer reviewe

    Self-assembled core-shell CdTe/Poly(3-hexylthiophene) nanoensembles as novel donor−acceptor light-harvesting systems

    Get PDF
    The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HTNPs) of 100 nm as core and semiconducting CdTe quantum dots (CdTeQDs) as shell with a thickness of a few tens of nanometres was accomplished by employing a re-precipitation approach. The structure, morphology and composition of CdTeQDs/P3HTNPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light scattering studies. Intimate interface contact between the CdTeQDs shell and the P3HTNPs core leads to the stabilization of the CdTeQDs/P3HTNPs nanoensemble as probed by steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTeQDs at 555 nm, accompanied by simultaneous increase of emission of P3HTNPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTeQDs/P3HTNPs further proves the formation of a stabilized core-shell system in the solid-state. Photoelectrochemical assays on CdTeQDs/P3HTNPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a three times increased photocurrent compared to CdTeQDs. The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTeQDs shell forces the P3HTNPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642742. AMB and WKM gratefully acknowledge financial support from Spanish MINECO under project ENE206-79282-C5-1-R and its associated European Regional Development Fund, as well as the Government of Aragon under project DGA-T66 and associated European Social Fund. RA gratefully acknowledges financial support from Spanish MINECO under project MAT2016 79776-P and its associated European Regional Development Fund, as well as the Government of Aragon under project DGA-E26 and associated European Social Fund. The STEM studies were conducted at the Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon Universidad de Zaragoza, Spain. The authors would like to thank Esteban Urriolabeitía for carrying out the NMR studies.Peer reviewe

    Nanoscale J-aggregates of poly(3-hexylthiophene): Key to electronic interface interactions with graphene oxide as revealed by KPFM

    No full text
    1 Esquema, 4 FigurasThe performance of organic thin film optoelectronic devices strongly relies on the nanoscale aggregate structure of the employed conjugated polymer. Their impact on electronic interface interactions with adjacent layers of graphene, widely reported to improve the device characteristics, yet remains an open issue, which needs to be addressed by an appropriate benchmark system. Here, we prepared discrete ensembles of poly(3-hexylthiophene) nanoparticles and graphene oxide sheets (P3HTNPs–GO) with well defined aggregate structures of either J- or H- type and imaged their photogenerated charge transfer dynamics across their interface by Kelvin probe force microscopy (KPFM). A distinctive inversion of the sign of the surface potential and surface photovoltage (SPV) demonstrates that J-aggregates are decisive for establishing charge transfer interactions with GO. These enable efficient injection of photogenerated holes from P3HTNPs into GO sheets over a range of tens of nanometers, causing a slow SPV relaxation dynamics, and define their operation as efficient hole-transport layer (HTL). Conversely, H-type aggregates do not facilitate specific interactions and entrust GO sheets the role of charge-blocking layers (CBL). The direct effect of P3HT’s aggregate structure on GO’s functional operation as HTL or CBL thus establishes clear criteria towards the rational design of improved organic optoelectronic devices.This work has received funding from the Spanish MINECO (project grants ENE 2016-79282-C5-1-R and ENE 2016-79282-C5-4-R) and associated EU Regional Development Funds. A.M.B., E.I., and W.K.M. acknowledge funding from European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowksa-Curie grant agreement no. 642742. They also acknowledge the Gobierno de Aragón (Grupo Reconocido DGA T03_17R) and associated EU Regional Development Funds.We also acknowledge institutional support from the Unit of Information Resources for Research at the "Consejo Superior de Investigaciones Científicas" (CSIC) for the article-processing charges contribution.Peer reviewe
    corecore