142 research outputs found
Homological perturbation theory for nonperturbative integrals
We use the homological perturbation lemma to produce explicit formulas
computing the class in the twisted de Rham complex represented by an arbitrary
polynomial. This is a non-asymptotic version of the method of Feynman diagrams.
In particular, we explain that phenomena usually thought of as particular to
asymptotic integrals in fact also occur exactly: integrals of the type
appearing in quantum field theory can be reduced in a totally algebraic fashion
to integrals over an Euler--Lagrange locus, provided this locus is understood
in the scheme-theoretic sense, so that imaginary critical points and
multiplicities of degenerate critical points contribute.Comment: 22 pages. Minor revisions from previous versio
The power of random measurements: measuring Tr(\rho^n) on single copies of \rho
While it is known that Tr(\rho^n) can be measured directly (i.e., without
first reconstructing the density matrix) by performing joint measurements on n
copies of the same state rho, it is shown here that random measurements on
single copies suffice, too. Averaging over the random measurements directly
yields estimates of Tr(\rho^n), even when it is not known what measurements
were actually performed (so that one cannot reconstruct \rho)
A perturbative approach to the reconstruction of the eigenvalue spectrum of a normal covariance matrix from a spherically truncated counterpart
In this paper we propose a perturbative method for the reconstruction of the
covariance matrix of a multinormal distribution, under the assumption that the
only available information amounts to the covariance matrix of a spherically
truncated counterpart of the same distribution. We expand the relevant
equations up to the fourth perturbative order and discuss the analytic
properties of the first few perturbative terms. We finally compare the proposed
approach with an exact iterative algorithm (presented in Palombi et al. (2017))
in the hypothesis that the spherically truncated covariance matrix is estimated
from samples of various sizes.Comment: 39 pages, 7 figures. v2: version accepted for publication in J. Comp.
Appl. Mat
Applications of sensitivity analysis for probit stochastic network equilibrium
Network equilibrium models are widely used by traffic practitioners to aid them in making decisions concerning the operation and management of traffic networks. The common practice is to test a prescribed range of hypothetical changes or policy measures through adjustments to the input data, namely the trip demands, the arc performance (travel time) functions, and policy variables such as tolls or signal timings. Relatively little use is, however, made of the full implicit relationship between model inputs and outputs inherent in these models. By exploiting the representation of such models as an equivalent optimisation problem, classical results on the sensitivity analysis of non-linear programs may be applied, to produce linear relationships between input data perturbations and model outputs. We specifically focus on recent results relating to the probit Stochastic User Equilibrium (PSUE) model, which has the advantage of greater behavioural realism and flexibility relative to the conventional Wardrop user equilibrium and logit SUE models. The paper goes on to explore four applications of these sensitivity expressions in gaining insight into the operation of road traffic networks. These applications are namely: identification of sensitive, ‘critical’ parameters; computation of approximate, re-equilibrated solutions following a change (post-optimisation); robustness analysis of model forecasts to input data errors, in the form of confidence interval estimation; and the solution of problems of the bi-level, optimal network design variety. Finally, numerical experiments applying these methods are reported
Be Relevant, Careful, and Appropriate: Scary Advice on the Use of Humor to the Novice Public Speaker
Most contemporary public speaking texts contain some reference to the effective use of humor by public speakers. This advice tends to reflect common assumptions on the role of humor in public speaking and the ability of the novice speaker to incorporate humor in a speech. A review of 27 contemporary texts explores the trend in humor instruction and offers 11 categories which summarize the treatment of humor: (1) theories of humor, (2) rationale for the use of humor, (3) guidelines for the use of humor, (4) sources of humor, (5) humor as a factor of attention, (6) specific humorous techniques to employ in a speech, (7) injunctions on the use of humor, (8) who should use humor, (9) the use of self-deprecating humor, (10) how to deliver the humor, (11) humorous speaking
Maritime expressions:a corpus based exploration of maritime metaphors
This study uses a purpose-built corpus to explore the linguistic legacy of Britain’s maritime history found in the form of hundreds of specialised ‘Maritime Expressions’ (MEs), such as TAKEN ABACK, ANCHOR and ALOOF, that permeate modern English. Selecting just those expressions commencing with ’A’, it analyses 61 MEs in detail and describes the processes by which these technical expressions, from a highly specialised occupational discourse community, have made their way into modern English. The Maritime Text Corpus (MTC) comprises 8.8 million words, encompassing a range of text types and registers, selected to provide a cross-section of ‘maritime’ writing. It is analysed using WordSmith analytical software (Scott, 2010), with the 100 million-word British National Corpus (BNC) as a reference corpus. Using the MTC, a list of keywords of specific salience within the maritime discourse has been compiled and, using frequency data, concordances and collocations, these MEs are described in detail and their use and form in the MTC and the BNC is compared. The study examines the transformation from ME to figurative use in the general discourse, in terms of form and metaphoricity. MEs are classified according to their metaphorical strength and their transference from maritime usage into new registers and domains such as those of business, politics, sports and reportage etc. A revised model of metaphoricity is developed and a new category of figurative expression, the ‘resonator’, is proposed. Additionally, developing the work of Lakov and Johnson, Kovesces and others on Conceptual Metaphor Theory (CMT), a number of Maritime Conceptual Metaphors are identified and their cultural significance is discussed
Non-Parametric Approximations for Anisotropy Estimation in Two-dimensional Differentiable Gaussian Random Fields
Spatially referenced data often have autocovariance functions with elliptical
isolevel contours, a property known as geometric anisotropy. The anisotropy
parameters include the tilt of the ellipse (orientation angle) with respect to
a reference axis and the aspect ratio of the principal correlation lengths.
Since these parameters are unknown a priori, sample estimates are needed to
define suitable spatial models for the interpolation of incomplete data. The
distribution of the anisotropy statistics is determined by a non-Gaussian
sampling joint probability density. By means of analytical calculations, we
derive an explicit expression for the joint probability density function of the
anisotropy statistics for Gaussian, stationary and differentiable random
fields. Based on this expression, we obtain an approximate joint density which
we use to formulate a statistical test for isotropy. The approximate joint
density is independent of the autocovariance function and provides conservative
probability and confidence regions for the anisotropy parameters. We validate
the theoretical analysis by means of simulations using synthetic data, and we
illustrate the detection of anisotropy changes with a case study involving
background radiation exposure data. The approximate joint density provides (i)
a stand-alone approximate estimate of the anisotropy statistics distribution
(ii) informed initial values for maximum likelihood estimation, and (iii) a
useful prior for Bayesian anisotropy inference.Comment: 39 pages; 8 figure
The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields
We consider an "elastic" version of the statistical mechanical monomer-dimer
problem on the n-dimensional integer lattice. Our setting includes the
classical "rigid" formulation as a special case and extends it by allowing each
dimer to consist of particles at arbitrarily distant sites of the lattice, with
the energy of interaction between the particles in a dimer depending on their
relative position. We reduce the free energy of the elastic dimer-monomer (EDM)
system per lattice site in the thermodynamic limit to the moment Lyapunov
exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value
and covariance function are the Boltzmann factors associated with the monomer
energy and dimer potential. In particular, the classical monomer-dimer problem
becomes related to the MLE of a moving average GRF. We outline an approach to
recursive computation of the partition function for "Manhattan" EDM systems
where the dimer potential is a weighted l1-distance and the auxiliary GRF is a
Markov random field of Pickard type which behaves in space like autoregressive
processes do in time. For one-dimensional Manhattan EDM systems, we compute the
MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a
compact transfer operator on a Hilbert space which is related to the
annihilation and creation operators of the quantum harmonic oscillator and also
recast it as the eigenvalue problem for a pantograph functional-differential
equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue
of DCDS-
Los beneficios de España durante la Gran Guerra. Una aproximación a la balanza de pagos española, 1914-1920
Publicad
An open Problem on Strongly Consistent Learning of the Best Prediction for Gaussian Processes
- …
