29 research outputs found

    Pinna nobilis in the Greek seas (NE Mediterranean): on the brink of extinction?

    Get PDF
    The Mediterranean endemic fan mussel Pinna nobilis is suffering an ongoing basin-scale mass mortality event (MME) since 2016. As most Mediterranean populations have collapsed, the species has been declared as Critically Endangered in the IUCN Red List of threatened species. In an effort to track the progress of the MME and provide updated information on the status of the species in the Greek seas, data collected through dedicated surveys and opportunistic assessments during 2019 and 2020 have been compiled. During surveys conducted at 258 sites, a total of 14,589 fan mussels were recorded, of which 81.1% were dead. Of the remaining 2,762 live individuals, 256 were juveniles. Two marine areas that still sustain living populations were identified, namely Kalloni Gulf (Lesvos Island), and Laganas Bay (Zakynthos Island). The inner part of Kalloni Gulf appears to maintain the largest surviving population of the species in the eastern Mediterranean, with an abundance estimate of 684,000 individuals (95% confidence interval: 322,000-1,453,000). Solitary, potentially resistant, scattered individuals were recorded at several sites. Other previously abundant populations that had been assessed in the past, specifically those of Lake Vouliagmeni (Korinthiakos Gulf), Souda Bay (Crete) and Gera Gulf (Lesvos Island) with a total of ~350,000 individuals, have now been wiped out. Our results document the collapse of most P. nobilis populations throughout the Greek seas. The MME has progressed substantially between early 2019 and mid-2020, as indicated by the increase in mortality at sites consecutively monitored multiple times. This work highlights the urgent need for continuous monitoring of surviving populations and calls for immediate implementation of an effective protection and management strategy that will ensure the persistence of surviving individuals and the production of resistant offspring

    Wide-Geographic and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to Critically Endangered Species

    Get PDF
    A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.En prens

    New Mediterranean biodiversity records (October, 2014)

    Get PDF
    The Collective Article 'New Mediterranean Biodiversity Records' of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of alien and native species respectively. The new records of alien species include: the red alga Asparagopsis taxiformis (Crete and Lakonikos Gulf, Greece); the red alga Grateloupia turuturu (along the Israeli Mediterranean shore); the mantis shrimp Clorida albolitura (Gulf of Antalya, Turkey); the mud crab Dyspanopeus sayi (Mar Piccolo of Taranto, Ionian Sea); the blue crab Callinectes sapidus (Chios Island, Greece); the isopod Paracerceis sculpta (northern Aegean Sea, Greece); the sea urchin Diadema setosum (Gökova Bay, Turkey); the molluscs Smaragdia souverbiana, Murex forskoehlii, Fusinus verrucosus, Circenita callipyga, and Aplysia dactylomela (Syria); the cephalaspidean mollusc Haminoea cyanomarginata (Baia di Puolo, Massa Lubrense, Campania, southern Italy); the topmouth gudgeon Pseudorasbora parva (Civitavecchia, Tyrrhenian Sea); the fangtooth moray Enchelycore anatina (Plemmirio marine reserve, Sicily); the silver-cheeked toadfish Lagocephalus sceleratus (Saros Bay, Turkey; and Ibiza channel, Spain); the Indo-Pacific ascidian Herdmania momus in Kastelorizo Island (Greece); and the foraminiferal Clavulina multicamerata (Saronikos Gulf, Greece). The record of L. sceleratus in Spain consists the deepest (350-400m depth) record of the species in the Mediterranean Sea. The new records of native species include: first record of the ctenophore Cestum veneris in Turkish marine waters; the presence of Holothuria tubulosa and Holothuria polii in the Bay of Igoumenitsa (Greece); the first recorded sighting of the bull ray Pteromylaeus bovinus in Maltese waters; and a new record of the fish Lobotes surinamensis from Maliakos Gulf.peer-reviewe

    Wide-Geographic and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to Critically Endangered Species

    Get PDF
    20 Pág.A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.This work was funded by: DG Pesca i Medi Mari (GOIB),EsMarEs (order IEO by MITECO, Spanish government), Life UFE IP-PAF INTEMARES (LIFE15 IPE ES 012) “Gestión integrada, innovadora y participativa de la Red Natura 2000 en el medio marino español,” the research project “Estado de conservación del bivalvo amenazado Pinna nobilis en el PNAC” (OAPN 024/2010), the project RECONNECT (MIS 5017160) of the Programme Interreg V-B “Balkan-Mediterranean 2014–2020.” MTES (French Government), DREAL (Direction Régionale Environnement Aménagement Logement) and Région Occitanie (France) for funding research and monitoring of Pinna.GC and PP were contracted under the INIA-CCAA cooperative research programme for postdoctoral incorporation from the Spanish National Institute for Agricultural and Food Research and Technology (INIA) (DOC INIA 8/2013 and 15/2015). MV-L was supported by a Juan de la Cierva-Incorporación postdoctoral contract (ICJI-2016-29329, MICIU Programme). ML-S and EÁ were supported by a Personal Técnico de Apoyo contract MINECO programme (PTA2015-11709-I and PTA2015-10829- I, respectively). CP and GS were supported by the project RECONNECT (MIS 5017160) financed by the Transnational Cooperation Programme Interreg V-B “Balkan-Mediterranean 2014–2020” and co-funded by the European Union and national funds of the participating countries. CP was supported by Sorbonne University.Peer reviewe

    Deliverable 1.1 review document on the management of marine areas with particular regard on concepts, objectives, frameworks and tools to implement, monitor, and evaluate spatially managed areas

    Get PDF
    The main objectives if this document were to review the existing information on spatial management of marine areas, identifying the relevant policy objectives, to identify parameters linked to the success or failure of the various Spatially Managed marine Areas (SMAs) regimes, to report on methods and tools used in monitoring and evaluation of the state of SMAs, and to identify gaps and weaknesses in the existing frameworks in relation to the implementation, monitoring, evaluation and management of SMAs. The document is naturally divided in two sections: Section 1 reviews the concepts, objectives, drivers, policy and management framework, and extraneous factors related to the design, implementation and evaluation of SMAs; Section 2 reviews the tools and methods to monitor and evaluate seabed habitats and marine populations.peer-reviewe

    Deliverable 3.6 zoning plan of case studies : evaluation of spatial management options for the case studies

    Get PDF
    Within MESMA, nine case studies (CS) represent discrete marine European spatial entities, at different spatial scales, where a spatial marine management framework is in place, under development or considered. These CS (described in more details below) are chosen in such a way (MESMA D. 3.1 ) that they encompass the complexity of accommodating the various user functions of the marine landscape in various regions of the European marine waters. While human activities at sea are competing for space, there is also growing awareness of the possible negative effects of these human activities on the marine ecosystem. As such, system specific management options are required, satisfying current and future sectoral needs, while safeguarding the marine ecosystem from further detoriation. This integrated management approach is embedded in the concept of ecosystem based management (EBM). The goal of marine EBM is to maintain marine ecosystems in a healthy, productive and resilient condition, making it possible that they sustain human use and provide the goods and services required by society (McLeod et al. 2005). Therefore EBM is an environmental mangagement approach that recognises the interactions within a marine ecosystem, including humans. Hence, EBM does not consider single issues, species or ecosystems good and services in isolation. Operationalisation of EBM can be done through place-based or spatial management approaches (Lackey 1998), such as marine spatial planning (MSP). MSP is a public process of analysing and allocating the spatial and temporal distribution of human activities aiming at achieving ecological, economic and social objectives. These objectives are usually formulated through political processes (Douvere et al. 2007, Douvere 2008). Within MESMA, a spatially managed area (SMA) is then defined as “a geographical area within which marine spatial planning initiatives exist in the real world”. Marine spatial planning initiatives refer to existing management measures actually in place within a defined area, or in any stage of a process of putting management in place, e.g. plans or recommendations for a particular area. Management can include management for marine protection (e.g. in MPAs), or management for sectoral objectives (e.g. building a wind farm to meet renewable energy objectives). Within MESMA, SMAs can have different spatial scales. A SMA can be a small, specific area that is managed/planned to be managed for one specific purpose, but it can also be a larger area within which lots of plans or ‘usage zones’ exist. This definition is different from the definition mentioned in the DoW (page 60). The original definition was adapted during a CS leader workshop (2-4 May 2012 in Gent, Belgium) and formally accepted by the MESMA ExB during the ExB meeting in Cork (29-30 May 2012). MSP should result in a marine spatial management plan that will produce the desired future trough explicit decisions about the location and timing of human activities. Ehler & Douvere (2009) consider this spatial management as a beginning toward the the implementation of desired goals and objectives. They describe the spatial management plan as a comprehensive, strategic document that provides the framework and direction for marine spatial management decisions. The plan should identify when, where and how goals and objectives will be met. Zoning (the development of zoning plans) is often an important management measure to implement spatial management plans. The purpose of a zoning plan (Ehler & Douvere 2009) is: To provide protection for biologically and ecologically important habitats, ecosystems, and ecological processes. To seperate conflicting human activities, or to combine compatible activities. To protect the natural values of the marine management area (in MESMA terminology: the SMA) while allowing reasonable human uses of the area. To allocate areas for reasonable human uses while minimising the effects of these human uses on each other, and nature. To preserve some areas of the SMA in their natural state undisturbed by humans except for scientific and educational purposes.peer-reviewe

    Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area

    No full text
    International audienceThe relative vulnerability of various habitat types to var. invasion was investigated in the National Marine Park of Zakynthos (Ionian Sea, Greece). The density of fronds was modelled with generalized additive models for location, scale and shape (GAMLSS), based on an information theory approach. The species was present in as much as 33% of 748 randomly placed quadrats, which documents its aggressive establishment in the area. The probability of presence of the alga within randomly placed 20 x 20 cm quadrats was 83% on 'matte morte' (zones of fibrous remnants of a former bed), 69% on rocky bottoms, 86% along the margins of meadows, 10% on sandy/muddy substrates, and 6% within meadows. The high frond density on 'matte morte' and rocky bottoms indicates their high vulnerability. The lowest frond density was observed within meadows. However, on the margins of meadows and within gaps in fragmented meadows relative high densities were observed. Such gaps within meadows represent spots of high vulnerability to invasion

    Anthropogenic disturbance of coastal habitats promotes the spread of the introduced scleractinian coral Oculina patagonica in the Mediterranean Sea

    No full text
    The extensive human-mediated modifications of shallow coastal habitats drastically alter selection regimes and may assist alien invasions. The preferential colonization of anthropogenic hard substrata by a non-indigenous scleractinian coral (Oculina patagonica) was investigated in a highly disturbed coastal area, along the eastern Saronikos Gulf (Aegean Sea, Eastern Mediterranean). Although the species occurred on both natural and anthropogenic substrata at similar frequencies, its abundance was substantially higher on the latter, indicating novel space availability as a factor enhancing the coral’s invasiveness. The species was present along the shallow (0.5 – 5 m) infralittoral zone of the studied coastline and its percent cover exceeded 50% in some sites of anthropogenic hard substrata. The occupancy of the species declined with distance from a highly disturbed industrialized/urbanized area (port of Piraeus). After its first finding close to the port of Piraeus (presumably by shipping) in 2005, O. patagonica has been spreading rapidly along the adjacent coastlines and is contributing to a further modification of shallow hard substratum habitats.JRC.H.1-Water Resource
    corecore