215 research outputs found
Back Reaction Problem in the Inflationary Universe
We investigate the back reaction of cosmological perturbations on an
inflationary universe using the renormalization-group method. The second-order
zero mode solution which appears by the nonlinearity of the Einstein equation
is regarded as a secular term of a perturbative expansion, we renormalized a
constant of integration contained in the background solution and absorbed the
secular term to this constant in a gauge-invariant manner. The resultant
renormalization-group equation describes the back reaction effect of
inhomogeneity on the background universe. For scalar type classical
perturbation, by solving the renormalization-group equation, we find that the
back reaction of the long wavelength fluctuation works as a positive spatial
curvature, and the short wavelength fluctuation works as a radiation fluid. For
the long wavelength quantum fluctuation, the effect of back reaction is
equivalent to a negative spatial curvature.Comment: 17 page
The back reaction and the effective Einstein's equation for the Universe with ideal fluid cosmological perturbations
We investigate the back reaction of cosmological perturbations on the
evolution of the Universe using the renormalization group method. Starting from
the second order perturbed Einstein's equation, we renormalize a scale factor
of the Universe and derive the evolution equation for the effective scale
factor which includes back reaction due to inhomogeneities of the Universe. The
resulting equation has the same form as the standard Friedman-Robertson-Walker
equation with the effective energy density and pressure which represent the
back reaction effect.Comment: 16 pages, to appear in Phys. Rev.
Lunar International Science Coordination/Calibration Targets
A new era of international lunar exploration has begun and will expand over the next four years with data acquired from at least four sophisticated remote sensing missions: KAGUYA (SELENE) [Japan], Chang'E [China], Chandrayaan-l [India], and LRO [United States]. It is recognized that this combined activity at the Moon with modern sophisticated sensors wi II provide unprecedented new information about the Moon and will dramatically improve our understanding of Earth's nearest neighbor. It is anticipated that the blooming of scientific exploration of the Moon by nations involved in space activities will seed and foster peaceful international coordination and cooperation that will benefit all. Summarized here are eight Lunar International Science Coordination/Calibration Targets (L-ISCT) that are intended to a) allow cross-calibration of diverse multi-national instruments and b) provide a focus for training young scientists about a range of lunar science issues. The targets, discussed at several scientific forums, were selected for coordinated science and instrument calibration of orbital data. All instrument teams are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments
Applications of the DFLU flux to systems of conservation laws
The DFLU numerical flux was introduced in order to solve hyperbolic scalar
conservation laws with a flux function discontinuous in space. We show how this
flux can be used to solve systems of conservation laws. The obtained numerical
flux is very close to a Godunov flux. As an example we consider a system
modeling polymer flooding in oil reservoir engineering
Renormalization Group Approach to Cosmological Back Reaction Problems
We investigated the back reaction of cosmological perturbations on the
evolution of the universe using the second order perturbation of the Einstein's
equation. To incorporate the back reaction effect due to the inhomogeneity into
the framework of the cosmological perturbation, we used the renormalization
group method. The second order zero mode solution which appears by the
non-linearities of the Einstein's equation is regarded as a secular term of the
perturbative expansion, we renormalized a constant of integration contained in
the background solution and absorbed the secular term to this constant. For a
dust dominated universe, using the second order gauge invariant quantity, we
derived the renormalization group equation which determines the effective
dynamics of the Friedman-Robertson-Walker universe with the back reaction
effect in a gauge invariant manner. We obtained the solution of the
renormalization group equation and found that perturbations of the scalar mode
and the long wavelength tensor mode works as positive spatial curvature, and
the short wavelength tensor mode as radiation fluid.Comment: 18 pages, revtex, to appear in Phys. Rev.
Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94743/1/grl23179.pd
Assessing the detection of human papillomavirus late mRNA in liquid base cytology samples for risk stratification of cervical disease
Molecular human papillomavirus (HPV) testing is an important and developing tool for cervical disease management. However there is a requirement to develop new HPV tests that can differentiate between clinically significant and benign, clinically insignificant infection. Evidence would indicate that clinically significant infection is linked to an abortive HPV replication cycle. In particular the later stages of the replication cycle (i.e., production of late messenger (m) RNAs and proteins) appear compromised. Compared to current DNA-based tests which indicate only presence or absence of virus, detecting virus mRNAs by reverse transcriptase PCR (RT-PCR) may give a more refined insight into viral activity and by implication, clinical relevance. A novel quantitative (q)RT-PCR assay was developed for the detection of mRNAs produced late in the viral replication cycle. Initially this was validated on HPV-containing cell lines before being applied to a panel of 223 clinical cervical samples representing the cervical disease spectrum (normal to high grade). Samples were also tested by a commercial assay which detects expression of early HPV E6/E7 oncoprotein mRNAs. Late mRNAs were found in samples associated with no, low and high grade disease and did not risk-stratify HPV infection. The data reveal hidden complexities within the virus replication cycle and associated lesion development. This suggests that future mRNA tests for cervical disease may require quantitative detection of specific novel viral mRNAs
- …
