10 research outputs found

    Identification and evaluation of antiviral compounds targeting Rift Valley fever virus

    No full text
    Rift Valley fever virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease Rift Valley fever (RVF). RVFV causes significant morbidity and mortality in humans and livestock throughout Africa and the Arabian Peninsula. RVFV is an emerging virus and is capable of infecting a broad range of mosquito species distributed around the world, so it poses a potential threat globally. A wide range of livestock animals (e.g. sheep, goats, cows, and camels) and some wild animals become highly affected by RVFV. In humans, RVFV infection presents as an acute self-limiting febrile illness that may lead to more severe hemorrhagic fever and encephalitis. The severity of the disease is mostly dependent on age and the species of mammal, but other factors are also important. There are no licensed RVFV vaccines for humans, and there is a lack of effective antiviral drugs. Moreover, due to the severe pathogenicity, higher-level facilities are needed―biosafety level 3 (BSL-3) or more―to work with RVFV, which makes antiviral drug development more challenging. Because RVFV causes severe disease in Africa and the Arabian Peninsula, and has the potential to spread globally, it is essential that safe, efficient antiviral drugs against this virus are developed. The previously reported antiviral compound benzavir-2 inhibits the replication of several DNA viruses, i.e. human adenoviruses, herpes simplex virus (HSV) type 1, and HSV type 2, indicating a broadranging activity. We wanted to evaluate whether benzavir-2 had an effect against the RNA virus RVFV. For these and subsequent studies, we used a recombinant, modified RVFV strain with a deleted NSs gene, which was replaced by a reporter gene (rRVFVΔNSs::Katushka), enabling the studies to be conducted under BSL-2 conditions. The NSs gene is the main virulence factor for RVFV and without it, RVFV become less pathogenic. The reporter gene made it possible for us to quantify infection with the help of the red fluorescent protein. We found that benzavir-2 effectively inhibited RVFV infection in cell culture at an effective concentration showing 50% inhibition (EC50) of 0.6 ÎŒM. Benzavir-2 also inhibited the production of progeny virus. When we studied the pharmacokinetic properties, we found that benzavir-2 had good in vitro solubility, permeability, and metabolic stability. When we investigated the oral bioavailability in mice by administering benzavir-2 in peanut butter pellets, high systemic distribution was observed without any adverse toxic effects. Benzavir-2 thus inhibited RVFV infection in cell culture and showed excellent pharmacokinetic properties, suggesting the possibility of evaluating its effectiveness in an animal model. Since benzavir-2 has a broad effect against both RNA and DNA viruses, we speculated that the antiviral mechanism affects cellular targets. We also wanted to explore a large number of small chemical compounds with unknown properties and identify any anti-RVFV activities. Thus, we developed a whole-cell-based high-throughput reporter-based assay, and screened 28,437 small chemical compounds. The assay was established after optimization of several parameters. After primary and secondary screening, we identified 63 compounds that inhibited RVFV infection by 60% at a concentration of 3.12 ÎŒM and showed ≄ 50% cell viability at 25 ÎŒM. After a dose-dependent screening of these 63 compounds, several compounds were identified with highly efficient anti-RVFV properties. Finally, N1-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine (compound 1) was selected as the lead compound. We performed a structure-activity relationship (SAR) analysis of compound 1 by replacing and changing component after component of the chemical compound to see how this affected the antiviral activity. After the SAR analysis, the antiviral activity did not change, but we could improve the cytotoxicity profile. Our studies suggested that the improved compound, 13a, might be targeting the early phase of the RVFV lifecycle. In conclusion, we developed an efficient and reliable screening method that creates possibilities for discovering and developing antivirals against RVFV under BSL-2 conditions. We also identified several chemical compounds with anti-RVFV activities, which might lead to development of therapies for RVFV infection.Rift Valley fever virus (RVFV) Ă€r ett vektorburet RNA-virus som orsakar Rift Valley fever (RVF). RVF virus orsakar betydande sjukdom och död hos mĂ€nniskor och boskap i hela Afrika och pĂ„ den Arabiska halvön. Viruset kan orsaka stora, plötsliga utbrott och eftersom det kan infektera mĂ„nga olika myggarter som finns runt om i vĂ€rlden sĂ„ utgör RVF ett potentiellt globalt hot. Ett stort antal olika boskapsdjur och nĂ„gra vilda djur drabbas hĂ„rt under RVF utbrott. MĂ€nniskor fĂ„r en sjukdom som kan vara mild, men kan utvecklas till allvarligare symptom som blödarfeber och hjĂ€rninflammation (encefalit) och under RVF-utbrott Ă€r antalet döda högt. Hur allvarlig sjukdomens blir Ă€r mest beroende av Ă„lder, bakomliggande symptom och för djur, vilken djurart som infekteras. FrĂ„nvaron av licensierade vacciner för mĂ€nniskor och brist pĂ„ effektiva antivirala lĂ€kemedel gör behandling och prevention av denna sjukdom utmanande. Dessutom, pĂ„ grund av att den kan orsaka allvarlig sjukdom och död behövs höga nivĂ„er av biosĂ€kerhet (biosĂ€kerhetsnivĂ„-3, BSL-3) för att arbeta med RVFV vilket försvĂ„rar utvecklingen av lĂ€kemedel. Eftersom RVFV orsakar allvarlig sjukdom i Afrika och Arabiska halvön och har potential att spridas globalt Ă€r det viktigt att utveckla sĂ€kra effektiva antivirala medel för detta virus. Den tidigare rapporterade antivirala föreningen benzavir-2 hĂ€mmar flera DNA-virus, dvs humant adenovirus, herpes simplexvirus typ-1 och typ-2 infektion, vilket indikerar en bredverkande aktivitet. Vi ville utvĂ€rdera om benzavir-2 ocksĂ„ hade en effekt mot RNA-viruset RVFV. För dessa och följande studier anvĂ€nde vi en rekombinant, modifierad RVFV med en borttagen NSs-gen, ersatt av en reportergen, som gjorde det möjligt att utföra studierna i BSL-2-förhĂ„llanden. NSsgenen Ă€r den huvudsakliga virulensfaktorn för RVFV och med den borttagen Ă€r RVFV mindre sjukdomsframkallande. Reportergenen gjorde det möjligt att detektera rött fluoroscerande ljus efter virusinfektion och anvĂ€nda det som ett mĂ„tt pĂ„ infektion. Vi observerade att benzavir-2 effektivt inhiberade RVFVinfektion i cellkultur med 50% inhibering vid en koncentration av 0,6ÎŒM. Benzavir-2 hĂ€mmade ocksĂ„ produktion av nya viruspartiklar. NĂ€r vi studerade dess farmakokinetiska egenskaper fann vi att benzavir-2 hade bra löslighet, permeabilitet och metabolisk stabilitet i cellkultur. NĂ€r vi undersökte hur bra möss kunde ta upp benzavir-2 genom att Ă€ta föreningen blandad med jordnötssmör (den orala biotillgĂ€ngligheten) observerades en hög serumkoncentration av benzavir-2 utan skadliga effekter. Benzavir-2 hĂ€mmade alltsĂ„ RVFV-infektion i cellkultur och visade pĂ„ utmĂ€rkta farmakokinetiska egenskaper med potential att senare kunna utvĂ€rdera effektiviteten i en djurmodell. Eftersom benzavir-2 har en bredverkande effekt mot bĂ„de RNA och DNA-virus, spekulerar vi att den antivirala mekanismen pĂ„verkar cellulĂ€ra mĂ„l. I den andra studien ville vi undersöka ett stort antal smĂ„ kemiska föreningar med okĂ€nda egenskaper och identifiera anti-RVFV aktivitet hos dessa. För att genomföra detta utvecklade vi en helcellsbaserad ”high-throughput-screening” analys dĂ„ vi anvĂ€nde den rekombinanta, modifierade RVFV beskriven ovan och screenade 28,437 smĂ„ kemiska föreningar. Till att börja med optimerades analysmetoden med avseende pĂ„ flera olika parametrar. DĂ€refter utfördes primĂ€r och sekundĂ€r screening och 63 föreningar som inhiberade RVFV-infektion identifierades. De inhiberade RVFV-infektion med 60% vid 3,12ÎŒM och uppvisade ≄50% cellöverlevnad vid 25ÎŒM. Efter en dosberoende analys av dessa 63 föreningar kunde vi fokusera pĂ„ nĂ„gra av föreningarna med mycket effektiva anti-RVFV egenskaper. Slutligen valdes N1-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine (förening 1) som vĂ„r ledande förening. Vi utförde dĂ€refter en strukturaktivitetsrelationsanalys (SAR) för förening 1. SAR-analys innebĂ€r att man byter ut och förĂ€ndrar komponent efter komponent i den kemiska föreningen för att se hur det pĂ„verkar den antivirala aktiviteten. Efter SAR-analysen förĂ€ndrades inte den antivirala egenskapen, men vi kunde förbĂ€ttra cytotoxicitetsprofilen sĂ„ att föreningen hade en lĂ„g toxisk effekt pĂ„ vĂ€rdcellen. Den förbĂ€ttrade föreningen benĂ€mns 13a, och vĂ„r studie föreslog ocksĂ„ att förening 13a kan vara aktiv under den tidiga fasen av RVFV-livscykel. Sammanfattningsvis har vi identifierat flera kemiska föreningar med anti-RVFV aktiviteter som kan leda till utvecklande av terapi mot RVFV. Denna studie öppnar ocksĂ„ möjligheter att upptĂ€cka och utveckla antivirala medel mot RVFV i biosĂ€kerhets-2 nivĂ„

    Identification and evaluation of antiviral compounds targeting Rift Valley fever virus

    No full text
    Rift Valley fever virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease Rift Valley fever (RVF). RVFV causes significant morbidity and mortality in humans and livestock throughout Africa and the Arabian Peninsula. RVFV is an emerging virus and is capable of infecting a broad range of mosquito species distributed around the world, so it poses a potential threat globally. A wide range of livestock animals (e.g. sheep, goats, cows, and camels) and some wild animals become highly affected by RVFV. In humans, RVFV infection presents as an acute self-limiting febrile illness that may lead to more severe hemorrhagic fever and encephalitis. The severity of the disease is mostly dependent on age and the species of mammal, but other factors are also important. There are no licensed RVFV vaccines for humans, and there is a lack of effective antiviral drugs. Moreover, due to the severe pathogenicity, higher-level facilities are needed―biosafety level 3 (BSL-3) or more―to work with RVFV, which makes antiviral drug development more challenging. Because RVFV causes severe disease in Africa and the Arabian Peninsula, and has the potential to spread globally, it is essential that safe, efficient antiviral drugs against this virus are developed. The previously reported antiviral compound benzavir-2 inhibits the replication of several DNA viruses, i.e. human adenoviruses, herpes simplex virus (HSV) type 1, and HSV type 2, indicating a broadranging activity. We wanted to evaluate whether benzavir-2 had an effect against the RNA virus RVFV. For these and subsequent studies, we used a recombinant, modified RVFV strain with a deleted NSs gene, which was replaced by a reporter gene (rRVFVΔNSs::Katushka), enabling the studies to be conducted under BSL-2 conditions. The NSs gene is the main virulence factor for RVFV and without it, RVFV become less pathogenic. The reporter gene made it possible for us to quantify infection with the help of the red fluorescent protein. We found that benzavir-2 effectively inhibited RVFV infection in cell culture at an effective concentration showing 50% inhibition (EC50) of 0.6 ÎŒM. Benzavir-2 also inhibited the production of progeny virus. When we studied the pharmacokinetic properties, we found that benzavir-2 had good in vitro solubility, permeability, and metabolic stability. When we investigated the oral bioavailability in mice by administering benzavir-2 in peanut butter pellets, high systemic distribution was observed without any adverse toxic effects. Benzavir-2 thus inhibited RVFV infection in cell culture and showed excellent pharmacokinetic properties, suggesting the possibility of evaluating its effectiveness in an animal model. Since benzavir-2 has a broad effect against both RNA and DNA viruses, we speculated that the antiviral mechanism affects cellular targets. We also wanted to explore a large number of small chemical compounds with unknown properties and identify any anti-RVFV activities. Thus, we developed a whole-cell-based high-throughput reporter-based assay, and screened 28,437 small chemical compounds. The assay was established after optimization of several parameters. After primary and secondary screening, we identified 63 compounds that inhibited RVFV infection by 60% at a concentration of 3.12 ÎŒM and showed ≄ 50% cell viability at 25 ÎŒM. After a dose-dependent screening of these 63 compounds, several compounds were identified with highly efficient anti-RVFV properties. Finally, N1-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine (compound 1) was selected as the lead compound. We performed a structure-activity relationship (SAR) analysis of compound 1 by replacing and changing component after component of the chemical compound to see how this affected the antiviral activity. After the SAR analysis, the antiviral activity did not change, but we could improve the cytotoxicity profile. Our studies suggested that the improved compound, 13a, might be targeting the early phase of the RVFV lifecycle. In conclusion, we developed an efficient and reliable screening method that creates possibilities for discovering and developing antivirals against RVFV under BSL-2 conditions. We also identified several chemical compounds with anti-RVFV activities, which might lead to development of therapies for RVFV infection.Rift Valley fever virus (RVFV) Ă€r ett vektorburet RNA-virus som orsakar Rift Valley fever (RVF). RVF virus orsakar betydande sjukdom och död hos mĂ€nniskor och boskap i hela Afrika och pĂ„ den Arabiska halvön. Viruset kan orsaka stora, plötsliga utbrott och eftersom det kan infektera mĂ„nga olika myggarter som finns runt om i vĂ€rlden sĂ„ utgör RVF ett potentiellt globalt hot. Ett stort antal olika boskapsdjur och nĂ„gra vilda djur drabbas hĂ„rt under RVF utbrott. MĂ€nniskor fĂ„r en sjukdom som kan vara mild, men kan utvecklas till allvarligare symptom som blödarfeber och hjĂ€rninflammation (encefalit) och under RVF-utbrott Ă€r antalet döda högt. Hur allvarlig sjukdomens blir Ă€r mest beroende av Ă„lder, bakomliggande symptom och för djur, vilken djurart som infekteras. FrĂ„nvaron av licensierade vacciner för mĂ€nniskor och brist pĂ„ effektiva antivirala lĂ€kemedel gör behandling och prevention av denna sjukdom utmanande. Dessutom, pĂ„ grund av att den kan orsaka allvarlig sjukdom och död behövs höga nivĂ„er av biosĂ€kerhet (biosĂ€kerhetsnivĂ„-3, BSL-3) för att arbeta med RVFV vilket försvĂ„rar utvecklingen av lĂ€kemedel. Eftersom RVFV orsakar allvarlig sjukdom i Afrika och Arabiska halvön och har potential att spridas globalt Ă€r det viktigt att utveckla sĂ€kra effektiva antivirala medel för detta virus. Den tidigare rapporterade antivirala föreningen benzavir-2 hĂ€mmar flera DNA-virus, dvs humant adenovirus, herpes simplexvirus typ-1 och typ-2 infektion, vilket indikerar en bredverkande aktivitet. Vi ville utvĂ€rdera om benzavir-2 ocksĂ„ hade en effekt mot RNA-viruset RVFV. För dessa och följande studier anvĂ€nde vi en rekombinant, modifierad RVFV med en borttagen NSs-gen, ersatt av en reportergen, som gjorde det möjligt att utföra studierna i BSL-2-förhĂ„llanden. NSsgenen Ă€r den huvudsakliga virulensfaktorn för RVFV och med den borttagen Ă€r RVFV mindre sjukdomsframkallande. Reportergenen gjorde det möjligt att detektera rött fluoroscerande ljus efter virusinfektion och anvĂ€nda det som ett mĂ„tt pĂ„ infektion. Vi observerade att benzavir-2 effektivt inhiberade RVFVinfektion i cellkultur med 50% inhibering vid en koncentration av 0,6ÎŒM. Benzavir-2 hĂ€mmade ocksĂ„ produktion av nya viruspartiklar. NĂ€r vi studerade dess farmakokinetiska egenskaper fann vi att benzavir-2 hade bra löslighet, permeabilitet och metabolisk stabilitet i cellkultur. NĂ€r vi undersökte hur bra möss kunde ta upp benzavir-2 genom att Ă€ta föreningen blandad med jordnötssmör (den orala biotillgĂ€ngligheten) observerades en hög serumkoncentration av benzavir-2 utan skadliga effekter. Benzavir-2 hĂ€mmade alltsĂ„ RVFV-infektion i cellkultur och visade pĂ„ utmĂ€rkta farmakokinetiska egenskaper med potential att senare kunna utvĂ€rdera effektiviteten i en djurmodell. Eftersom benzavir-2 har en bredverkande effekt mot bĂ„de RNA och DNA-virus, spekulerar vi att den antivirala mekanismen pĂ„verkar cellulĂ€ra mĂ„l. I den andra studien ville vi undersöka ett stort antal smĂ„ kemiska föreningar med okĂ€nda egenskaper och identifiera anti-RVFV aktivitet hos dessa. För att genomföra detta utvecklade vi en helcellsbaserad ”high-throughput-screening” analys dĂ„ vi anvĂ€nde den rekombinanta, modifierade RVFV beskriven ovan och screenade 28,437 smĂ„ kemiska föreningar. Till att börja med optimerades analysmetoden med avseende pĂ„ flera olika parametrar. DĂ€refter utfördes primĂ€r och sekundĂ€r screening och 63 föreningar som inhiberade RVFV-infektion identifierades. De inhiberade RVFV-infektion med 60% vid 3,12ÎŒM och uppvisade ≄50% cellöverlevnad vid 25ÎŒM. Efter en dosberoende analys av dessa 63 föreningar kunde vi fokusera pĂ„ nĂ„gra av föreningarna med mycket effektiva anti-RVFV egenskaper. Slutligen valdes N1-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine (förening 1) som vĂ„r ledande förening. Vi utförde dĂ€refter en strukturaktivitetsrelationsanalys (SAR) för förening 1. SAR-analys innebĂ€r att man byter ut och förĂ€ndrar komponent efter komponent i den kemiska föreningen för att se hur det pĂ„verkar den antivirala aktiviteten. Efter SAR-analysen förĂ€ndrades inte den antivirala egenskapen, men vi kunde förbĂ€ttra cytotoxicitetsprofilen sĂ„ att föreningen hade en lĂ„g toxisk effekt pĂ„ vĂ€rdcellen. Den förbĂ€ttrade föreningen benĂ€mns 13a, och vĂ„r studie föreslog ocksĂ„ att förening 13a kan vara aktiv under den tidiga fasen av RVFV-livscykel. Sammanfattningsvis har vi identifierat flera kemiska föreningar med anti-RVFV aktiviteter som kan leda till utvecklande av terapi mot RVFV. Denna studie öppnar ocksĂ„ möjligheter att upptĂ€cka och utveckla antivirala medel mot RVFV i biosĂ€kerhets-2 nivĂ„

    Emerging Mosquito-Borne Viruses Linked to Aedes aegypti and Aedes albopictus : Global Status and Preventive Strategies

    No full text
    Emerging mosquito-borne viruses continue to cause serious health problems and economic burden among billions of people living in and near the tropical belt of the world. The highly invasive mosquito species Aedes aegypti and Aedes albopictus have successively invaded and expanded their presence as key vectors of Chikungunya virus, dengue virus, yellow fever virus, and Zika virus, and that has consecutively led to frequent outbreaks of the corresponding viral diseases. Of note, these two mosquito species have gradually adapted to the changing weather and environmental conditions leading to a shift in the epidemiology of the viral diseases, and facilitated their establishment in new ecozones inhabited by immunologically naive human populations. Many abilities of Ae. aegypti and Ae. albopictus, as vectors of significant arbovirus pathogens, may affect the infection and transmission rates after a bloodmeal, and may influence the vector competence for either virus. We highlight that many collaborating risk factors, for example, the global transportation systems may result in sporadic and more local outbreaks caused by mosquito-borne viruses related to Ae. aegypti and/or Ae. albopictus. Those local outbreaks could in synergy grow and produce larger epidemics with pandemic characters. There is an urgent need for improved surveillance of vector populations, human cases, and reliable prediction models. In summary, we recommend new and innovative strategies for the prevention of these types of infections

    Structural Modifications and Biological Evaluations of Rift Valley Fever Virus Inhibitors Identified from Chemical Library Screening

    No full text
    The Rift Valley fever virus (RVFV) is an emerging high-priority pathogen endemic in Africa with pandemic potential. There is no specific treatment or approved antiviral drugs for the RVFV. We previously developed a cell-based high-throughput assay to screen small molecules targeting the RVFV and identified a potential effective antiviral compound (1-N-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine) as a lead compound. Here, we investigated how structural modifications of the lead compound affected the biological properties and the antiviral effect against the RVFV. We found that the length of the 2-(3-aminopropylamino)ethyl chain of the compound was important for the compound to retain its antiviral activity. The antiviral activity was similar when the 2-(3-aminopropylamino)ethyl chain was replaced with a butyl piperazine chain. However, we could improve the cytotoxicity profile of the lead compound by changing the phenyl piperazine linker from the para-position (compound 9a) to the meta-position (compound 13a). Results from time-of-addition studies suggested that compound 13a might be active during virus post-entry and/or the replication phase of the virus life cycle and seemed to affect the K+ channel. The modifications improved the properties of our lead compound, and our data suggest that 13a is a promising candidate to evaluate further as a therapeutic agent for RVFV infection

    The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry

    No full text
    Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells

    Anti-Rift Valley fever virus activity in vitro, pre-clinical pharmacokinetics and oral bioavailability of benzavir-2, a broad-acting antiviral compound

    No full text
    Rift Valley fever virus (RVFV) is a mosquito-borne hemorrhagic fever virus affecting both humans and animals with severe morbidity and mortality and is classified as a potential bioterror agent due to the possible aerosol transmission. At present there is no human vaccine or antiviral therapy available. Thus, there is a great need to develop new antivirals for treatment of RVFV infections. Benzavir-2 was previously identified as potent inhibitor of human adenovirus, herpes simplex virus type 1, and type 2. Here we assess the anti-RVFV activity of benzavir-2 together with four structural analogs and determine pre-clinical pharmacokinetic parameters of benzavir-2. In vitro, benzavir-2 efficiently inhibited RVFV infection, viral RNA production and production of progeny viruses. In vitro, benzavir-2 displayed satisfactory solubility, good permeability and metabolic stability. In mice, benzavir-2 displayed oral bioavailability with adequate maximum serum concentration. Oral administration of benzavir-2 formulated in peanut butter pellets gave high systemic exposure without any observed toxicity in mice. To summarize, our data demonstrated potent anti-RVFV activity of benzavir-2 in vitro together with a promising pre-clinical pharmacokinetic profile. This data support further exploration of the antiviral activity of benzavir-2 in in vivo efficacy models that may lead to further drug development for human use

    Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria

    No full text
    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 ÎŒM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure

    Fluvastatin mitigates SARS-CoV-2 infection in human lung cells.

    No full text
    Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells

    2-[4,5-Difluoro-2-(2-fluorobenzoylamino)-benzoylamino]benzoic acid, an antiviral compound with activity against acyclovir-resistant isolates of herpes simplex virus type 1 and 2

    No full text
    Herpes simplex viruses (HSV-1 and HSV-2) are responsible for life-long latent infections in humans, with periods of viral reactivation associated with recurring ulcerations in the orofacial and genital tract. In immunosuppressed patients and neonates, HSV infections are associated with severe morbidity, and in some cases even mortality. Today, acyclovir is the standard therapy for management of HSV infections. However, the need for novel antiviral agents is apparent since HSV isolates resistant to acyclovir therapy are frequently isolated in immunosuppressed patients. In this study, we assessed the anti-HSV activity of the anti-adenoviral compounds 2-[2-(2-benzoylamino)-benzoylamino]benzoic acid, (Benzavir-1) and 2-[4,5-difluoro-2-(2-fluorobenzoylamino)-benzoylamino]benzoic acid, (Benzavir-2) on HSV-1 and HSV-2. Both compounds were active against both viruses. Importantly, Benzavir-2 had similar potency to acyclovir against both HSV types and it was active against clinical acyclovir-resistant HSV isolates
    corecore