12 research outputs found

    Observation of Small Cluster Formation in Concentrated Monoclonal Antibody Solutions and Its Implications to Solution Viscosity

    Get PDF
    AbstractMonoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions

    Molecular Simulations of the Pairwise Interaction of Monoclonal Antibodies

    No full text
    Molecular simulations are employed to compute the free energy of pairwise monoclonal antibodies (mAbs) association using a conformational sampling algorithm with a scoring function. The work reported here is aimed at investigating the mAb–mAb association driven by weak interactions with a computational method capable of predicting experimental observations of low binding affinity. The simulations are able to explore the free energy landscape. A steric interaction component, electrostatic interactions, and a nonpolar component of the free energy form the energy scoring function. Electrostatic interactions are calculated by solving the Poisson–Boltzmann equation. The nonpolar component is derived from the van der Waals interactions upon close contact of the protein surfaces. Two mAbs with similar IgG1 framework but with small sequence differences, mAb1 and mAb2, are considered for their different viscosity and propensity to form a weak interacting dimer. mAb1 presents favorable free energy of association at pH 6 with 15 mM of ion concentration reproducing experimental trends of high viscosity and dimer formation at high concentration. Free energy landscape and minimum free energy configurations of the dimer, as well as the second virial coefficient (<i>B</i><sub>22</sub>) values are calculated. The energy distributions for mAb1 are obtained, and the most probable configurations are seen to be consistent with experimental measurements. In contrast, mAb2 shows an unfavorable average free energy at the same buffer conditions due to poor electrostatic complementarity, and reversible dimer configurations with favorable free energy are found to be unlikely. Finally, the simulations of the mAb association dynamics provide insights on the self-association responsible for bulk solution behavior and aggregation, which are important to the processing and the quality of biopharmaceuticals

    Effect of Hierarchical Cluster Formation on the Viscosity of Concentrated Monoclonal Antibody Formulations Studied by Neutron Scattering

    No full text
    Recently, reversible cluster formation was identified as an underlying cause of anomalously large solution viscosities observed in some concentrated monoclonal antibody (mAb) formulations, which poses a major challenge to the use of subcutaneous injection for some mAbs. A fundamental understanding of the structural and dynamic origins of high viscosities in concentrated mAb solutions is thus of significant relevance to mAb applications in human health care, as well as being of scientific interest. Herein, we present a detailed investigation of an IgG1-based mAb to relate the short-time dynamics and microstructure to significant viscosity changes over a range of pharmaceutically relevant physiochemical conditions. The combination of light scattering, small-angle neutron scattering, and neutron spin echo measurement techniques conclusively demonstrates that, upon addition of Na<sub>2</sub>SO<sub>4</sub>, these antibodies form strongly bound reversible dimers at dilute concentrations that interact with each other to form large, loosely bound, transient clusters when concentrated. This hierarchical structure formation in solution causes a significant increase in the solution viscosity

    Solid-State Hydrogen–Deuterium Exchange Mass Spectrometry: Correlation of Deuterium Uptake and Long-Term Stability of Lyophilized Monoclonal Antibody Formulations

    No full text
    Solid state hydrogen–deuterium exchange with mass spectrometric analysis (ssHDX-MS) has been used to assess protein conformation and matrix interactions in lyophilized solids. ssHDX-MS metrics have been previously correlated to the formation of aggregates of lyophilized myoglobin on storage. Here, ssHDX-MS was applied to lyophilized monoclonal antibody (mAb) formulations and correlated to their long-term stability. After exposing lyophilized samples to D<sub>2</sub>O­(g), the amount of deuterium incorporated at various time points was determined by mass spectrometry for four different lyophilized mAb formulations. Hydrogen–deuterium exchange data were then correlated with mAb aggregation and chemical degradation, which was obtained in stability studies of >2.5 years. Deuterium uptake on ssHDX-MS of four lyophilized mAb formulations determined at the initial time point prior to storage in the dry state was directly and strongly correlated with the extent of aggregation and chemical degradation during storage. Other measures of physical and chemical properties of the solids were weakly or poorly correlated with stability. The data demonstrate, for the first time, that ssHDX-MS results are highly correlated with the stability of lyophilized mAb formulations. The findings thus suggest that ssHDX-MS can be used as an early read-out of differences in long-term stability between formulations helping to accelerate formulation screening and selection

    Coarse-Grained Modeling of the Self-Association of Therapeutic Monoclonal Antibodies

    No full text
    Coarse-grained computational models of two therapeutic monoclonal antibodies are constructed to understand the effect of domain-level charge–charge electrostatics on the self-association phenomena at high protein concentrations. The coarse-grained representations of the individual antibodies are constructed using an elastic network normal-mode analysis. Two different models are constructed for each antibody for a compact Y-shaped and an extended Y-shaped configuration. The resulting simulations of these coarse-grained antibodies that interact through screened electrostatics are done at six different concentrations. It is observed that a particular monoclonal antibody (hereafter referred to as MAb1) forms three-dimensional heterogeneous structures with dense regions or clusters compared to a different monoclonal antibody (hereafter referred to as MAb2) that forms more homogeneous structures (no clusters). These structures, together with the potential mean force (PMF) and radial distribution functions (RDF) between pairs of coarse-grained regions on the MAbs, are qualitatively consistent with the experimental observation that MAb1 has a significantly higher viscosity compared to MAb2, especially at concentrations >50 mg/mL, even though the only difference between the MAbs lies with a few amino acids at the antigen-binding loops (CDRs). It is also observed that the structures in MAb1 are formed due to stronger Fab–Fab interactions in corroboration with experimental observations. Evidence is also shown that Fab–Fc interactions can be equally important in addition to Fab–Fab interactions. The coarse-grained representations are effective in picking up differences based on local charge distributions of domains and make predictions on the self-association characteristics of these protein solutions. This is the first computational study of its kind to show that there are differences in structures formed by two different monoclonal antibodies at high concentrations

    Characterization of Protein–Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy

    No full text
    Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein–excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein–excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible
    corecore