25 research outputs found

    Parasitoid Abundance and Community Composition in Desert Vineyards and Their Adjacent Natural Habitats

    No full text
    Parasitoids are important natural enemies of many agricultural pests. Preserving natural habitats around agricultural fields may support parasitoid populations. However, the success of such an approach depends on the ability of parasitoids to utilize both crop and natural habitats. While these aspects have been studied extensively in temperate regions, very little is known about parasitoid communities in desert agroecosystems. We took one step in this direction by sampling parasitoids in six vineyards and their surrounding natural desert habitat in a hyper-arid region of the Negev Desert Highlands, Israel. We predicted that due to the high contrast in environmental conditions, parasitoid abundance and community composition would differ greatly between the crop and the natural desert habitats. We found that parasitoid abundance differed between the habitats; however, the exact distribution pattern depended on the time of year—with higher numbers of parasitoids in the natural habitat at the beginning of the vine growth season and higher numbers in the vineyard at the middle and end of the season. Although parasitoid community composition significantly differed between the vineyard and desert habitats, this only accounted for ~4% of the total variation. Overall, our results do not strongly support the notion of distinct parasitoid communities in the crop vs. the desert environment, suggesting that despite environmental contrasts, parasitoids may move between and utilize resources in both habitats

    Tripartite symbiosis of plant-weevil-bacteria is a widespread phenomenon in the Negev Desert

    No full text
    Abstract The weevil Conorhynchus palumbus develops in a mud chamber affixed to the roots of the summer annual plant Salsola inermis in the Negev Desert of Israel. The weevil carries nitrogen fixing bacteria, and evidence suggests that plants with weevils utilize the fixed nitrogen. To characterize the distribution, abundance and significance of this unique interaction, we surveyed Salsola plants in 16 sites throughout the Negev Desert. We excavated ~100 plants from each site, recorded the presence of weevils in their roots, and characterized the soil properties in each site. Weevil mud chambers were present in all of the sampled sites and their abundance was positively correlated with soil nitrogen content and with plant size, and negatively correlated with soil grain-size. Intriguingly, we found two additional weevil species–Menecleonus virgatus and Maximus mimosae–residing in mud chambers on Salsola roots, and found one additional Salsola species–S. incanescens–accommodating weevils. Nitrogen fixing bacteria were found in weevil larvae of the two additional species and at multiple sites. Overall, our findings suggest that potentially beneficial associations between weevils and plants may be more common than previously acknowledged, and may play an important role in this desert ecosystem

    Controlled Assembly of Sb2S3 Nanoparticles on Silica/Polymer Nanotubes: Insights into the Nature of Hybrid Interfaces

    Get PDF
    Silica nanotubes can serve as high aspect ratio templates for the deposition of inorganic nanoparticles to form novel hybrids. However, the nature of the interfacial binding is still an unresolved challenge when considered at the atomic level. In this work, novel nanocomposites have been successfully fabricated by the controlled nucleation and assembly of Sb(2)S(3) nanoparticles on the surface of mercaptopropyl-functionalized silica/polymer hybrid nanotubes (HNTs). The Sb(2)S(3) nanoparticles were strongly attached to the HNTs surface by interactions between the pendent thiol groups and inorganic sulfur atoms. Detailed analysis of the geometric and electronic structure using first–principle density functional theory demonstrates charge transfer from the nanoparticles to the underlying HNTs at the Sb(2)S(3)/HNTs interfaces. Formation of a packed array of Sb(2)S(3) nanoparticles on the HNTs results in mixing of the electronic states of the components, and is mediated by the mercaptopropyl bridges between Sb(2)S(3) and the outer layer of the HNTs
    corecore