56 research outputs found
Investigations of the Andean Past: Papers from the First Annual Northeast Conference on Andean Archaeology and Ethnohistory
The papers included in this volume represent fourteen of the twenty-three original papers presented at the First Annual Northeast Conference on Andean Archaeology and Ethnohistory held at Cornell University on November 13th and 14th, 1982. The papers are: The Preceramic Occupations of the Casma Valley, Peru by Michael A. Malpass, The Historical Development of a Coastal Andean Social Formation in Central Peru, 6000 to 500 B.C. by Thomas C. Patterson, Stone Tools in Ceramic Contexts: Exploring the Unstructured by Joan M. Gero, Possible Uses, Roles, and Meanings of Chavin-style Painted Textiles of South Coast Peru by Rebecca R. Stone, Megalithic Sites in the Nepena Valley, Peru by Richard E. Daggett, Huaca del Loro Revisited: The Nasca-Huarpa Connection by Allison C. Paulsen, Spatial Patterning and the Function of a Huari Architectural Compound by Christine C. Brewster-Wray, The Development of Huari Administrative Architecture by Lynda E. Spickard, Aspects of State Ideology in Huari and Tiwanaku Iconography: The Central Deity and the Sacrificer by Anita G. Cook, Shared Ideology and Parallel Political Development: Huari and Tiwanaku by William H. Isbell, Casma Incised Pottery: An Analysis of Collections from the Nepena Valley by Cheryl Daggett, High Altitude Land Use in the Huamachuco Area by T. McGreevy and R. Shaughnessy, La Lengua Pescadora: the Lost Dialect of Chimu Fishermen by Joel Rabinowitz, and The Chancas of Angaraes: 1450(?)--1765 by Paul H. Dillon.https://digitalcommons.library.umaine.edu/andean_past_special/1002/thumbnail.jp
Multiple Facets of Biodiversity Drive the Diversity-Stability Relationship
A significant body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversityâstability relationship remains unclear. Here we used data from 39 biodiversity experiments and structural equation modeling to investigate the roles of species richness, phylogenetic diversity, and both the diversity and community-weighted mean of functional traits representing the âfastâslowâ leaf economics spectrum in driving the diversityâstability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony. Contrary to our hypothesis, low phylogenetic diversity also enhances ecosystem stability directly, albeit weakly. While the diversity of fastâslow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our results demonstrate that biodiversity influences ecosystem stability via a variety of facets, thus highlighting a more multicausal relationship than has been previously acknowledged
Recommended from our members
Phosphorus dynamics in a tropical forest soil restored after strip mining
Background and aims We hypothesized that successful early ecosystem and soil development in these P-deficient soil materials will initially depend on effective re-establishment of P storage and cycling through organic matter. This hypothesis was tested in a 26-year chronosequence of seven lightly fertilized, oxidic soil materials restored to eucalypt forest communities after bauxite mining.
Methods Total P (Pt) status, Hedley P fractions and partial chemical speciation (NaOH-EDTA extraction and analysed using solution 31P NMR spectroscopy) were determined in the restored soils.
Results Concentrations of Pt and most Hedley fractions changed with restoration period, declined with depth and were strongly positively correlated with C and N concentrations. Biological P dominated the Labile and Intermediate P fractions while Long-term P was dominantly inorganic.
Organic P concentrations in NaOH-EDTA extracts and their chemical natures were similar in restored and unburned native forest sites. Phosphomonoesters were the dominant class of organic P.
Conclusions Surprisingly rapid P accretion and fractional changes occurred over 26 years, largely in the surface soils and closely associated with organic matter status. Alkaline hydrolysis products of phosphodiesters and pyrophosphate indicated the importance of microbial P cycling. The important consequences for long-term ecosystem development and biological diversity require further study
An attainable global vision for conservation and human well-being
A hopeful vision of the future is a world in which both people and nature thrive, but there is little evidence to support the feasibility of such a vision. We used a global, spatially explicit, systems modeling approach to explore the possibility of meeting the demands of increased populations and economic growth in 2050 while simultaneously advancing multiple conservation goals. Our results demonstrate that if, instead of âbusiness as usualâ practices, the world changes how and where food and energy are produced, this could help to meet projected increases in food (54%) and energy (56%) demand while achieving habitat protection (>50% of natural habitat remains unconverted in most biomes globally; 17% area of each ecoregion protected in each country), reducing atmospheric greenhouse-gas emissions consistent with the Paris Climate Agreement (â€1.6°C warming by 2100), ending overfishing, and reducing water stress and particulate air pollution. Achieving this hopeful vision for people and nature is attainable with existing technology and consumption patterns. However, success will require major shifts in production methods and an ability to overcome substantial economic, social, and political challenges
ctDNA-based detection of molecular residual disease in stage I-III non-small cell lung cancer patients treated with definitive radiotherapy
BackgroundSensitive and reliable biomarkers for early detection of recurrence are needed to improve post-definitive radiation risk stratification, disease management, and outcomes for patients with unresectable early-stage or locally advanced non-small cell lung cancer (NSCLC) who are treated with definitive radiation therapy (RT). This prospective, multistate single-center, cohort study investigated the association of circulating tumor DNA (ctDNA) status with recurrence in patients with unresectable stage I-III NSCLC who underwent definitive RT.MethodsA total of 70 serial plasma samples from 17 NSCLC patients were collected before, during, and after treatment. A personalized, tumor-informed ctDNA assay was used to track a set of up to 16 somatic, single nucleotide variants in the associated patientâs plasma samples.ResultsPre-treatment ctDNA detection rate was 82% (14/17) and varied based on histology and stage. ctDNA was detected in 35% (6/17) of patients at the first post-RT timepoint (median of 1.66 months following the completion of RT), all of whom subsequently developed clinical progression. At this first post-RT time point, patients with ctDNA-positivity had significantly worse progression-free survival (PFS) [hazard ratio (HR): 24.2, p=0.004], and ctDNA-positivity was the only significant prognostic factor associated with PFS (HR: 13.4, p=0.02) in a multivariate analysis. All patients who developed clinical recurrence had detectable ctDNA with an average lead time over radiographic progression of 5.4 months, and post-RT ctDNA positivity was significantly associated with poor PFS (p<0.0001).ConclusionPersonalized, longitudinal ctDNA monitoring can detect recurrence early in patients with unresectable NSCLC patients undergoing curative radiation and potentially risk-stratify patients who might benefit most from treatment intensification
- âŠ