1,884 research outputs found
Analytical theory for proton correlations in common water ice
We provide a fully analytical microscopic theory for the proton correlations
in water ice . We compute the full diffuse elastic neutron scattering
structure factor, which we find to be in excellent quantitative agreement with
Monte Carlo simulations. It is also in remarkable qualitative agreement with
experiment, in the absence of any fitting parameters. Our theory thus provides
a tractable analytical starting point to account for more delicate features of
the proton correlations in water ice. In addition, it directly determines an
effective field theory of water ice as a topological phase.Comment: 5 pages, 3 figure
Surface Impedance Determination via Numerical Resolution of the Inverse Helmholtz Problem
Assigning boundary conditions, such as acoustic impedance, to the frequency
domain thermoviscous wave equations (TWE), derived from the linearized
Navier-Stokes equations (LNSE) poses a Helmholtz problem, solution to which
yields a discrete set of complex eigenfunctions and eigenvalue pairs. The
proposed method -- the inverse Helmholtz solver (iHS) -- reverses such
procedure by returning the value of acoustic impedance at one or more unknown
impedance boundaries (IBs) of a given domain, via spatial integration of the
TWE for a given real-valued frequency with assigned conditions on other
boundaries. The iHS procedure is applied to a second-order spatial
discretization of the TWEs on an unstructured staggered grid arrangement. Only
the momentum equation is extended to the center of each IB face where pressure
and velocity components are co-located and treated as unknowns. The iHS is
finally closed via assignment of the surface gradient of pressure phase over
the IBs, corresponding to assigning the shape of the acoustic waveform at the
IB. The iHS procedure can be carried out independently for different
frequencies, making it embarrassingly parallel, and able to return the complete
broadband complex impedance distribution at the IBs in any desired frequency
range to arbitrary numerical precision. The iHS approach is first validated
against Rott's theory for viscous rectangular and circular ducts. The impedance
of a toy porous cavity with a complex geometry is then reconstructed and
validated with companion fully compressible unstructured Navier-Stokes
simulations resolving the cavity geometry. Verification against one-dimensional
impedance test tube calculations based on time-domain impedance boundary
conditions (TDIBC) is also carried out. Finally, results from a preliminary
analysis of a thermoacoustically unstable cavity are presented.Comment: As submitted to AIAA Aviation 201
On the isospin dependence of the mean spin-orbit field in nuclei
By the use of the latest experimental data on the spectra of Sb and
Sn and on the analysis of properties of other odd nuclei adjacent to
doubly magic closed shells the isospin dependence of a mean spin-orbit
potential is defined. Such a dependence received the explanation in the
framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure
Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems
Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers
Development of the algorithm for aircraft control at inaccurate measurement of the state vector and variable accuracy parameter
A parametric method of the synthesis of control in the closed circuit, taking into account explicitly generalized error of the inertial module, is presented. The law of control in the form of analytical formulas is typically assigned to the control program and does not change during flight of an unmanned aerial vehicle. This decreases the capabilities of the autonomous flight control system to overcome control errors, which occur for various reasons. To verify assumptions about a possibility of improving the accuracy of an aerial vehicle control by the data of the strapdown inertial navigation system on a certain time interval of autonomous operation, the calculation experiment was conducted with the use of the developed software complex, simulating operation of the automatic flight control system. Parametrization of the law of control is considered as the main contribution (the outcome). Introduction of the parameter made it possible to decrease a negative impact of measurement errors and other disturbing factors on accuracy of reaching by the point of flight destination. Through computer modeling, it was shown that it is possible to decrease the impact of a generalized measurement error on generation of values of control functions by changing the value of the parameter. Analytical expressions for the estimation of accuracy of automatic control at the known generalized error of the inertial module and limited disturbing influences were obtained. After analyzing the influence of these factors on accuracy of the object control, a set of recommendations on selection of a variable parameter of synthesis of control depending on precision level of the sensors, used in the inertial module of measuring sensors, was generated.Розглянуто розв’язання термінальної задачі управління та синтезований параметризований закон управління в аналітичному вигляді, який залежить від змінного параметра глибини прогнозу. Досліджено особливості впливу величини параметра управління на точність досягнення кінцевої точки, дані рекомендації з вибору параметра для нівелювання помилки інерційних вимірювань. Синтез управління здійснюється методом переслідування ведучої точки за інформацією, отриманою інтегруванням вимірювань фактичного прискорення і містить помилку, характерну для акселерометрів
An embedding potential definition of channel functions
We show that the imaginary part of the embedding potential, a generalised
logarithmic derivative, defined over the interface between an electrical lead
and some conductor, has orthogonal eigenfunctions which define conduction
channels into and out of the lead. In the case of an infinitely extended
interface we establish the relationship between these eigenfunctions and the
Bloch states evaluated over the interface. Using the new channel functions, a
well-known result for the total transmission through the conductor system is
simply derived.Comment: 14 pages, 2 figure
Electromagnetically induced switching of ferroelectric thin films
We analyze the interaction of an electromagnetic spike (one cycle) with a
thin layer of ferroelectric medium with two equilibrium states. The model is
the set of Maxwell equations coupled to the undamped Landau-Khalatnikov
equation, where we do not assume slowly varying envelopes. From linear
scattering theory, we show that low amplitude pulses can be completely
reflected by the medium. Large amplitude pulses can switch the ferroelectric.
Using numerical simulations and analysis, we study this switching for long and
short pulses, estimate the switching times and provide useful information for
experiments
Spin ice in a field: quasi-phases and pseudo-transitions
Thermodynamics of the short-range model of spin ice magnets in a field is
considered in the Bethe - Peierls approximation. The results obtained for
[111], [100] and [011] fields agrees reasonably well with the existing
Monte-Carlo simulations and some experiments. In this approximation all
extremely sharp field-induced anomalies are described by the analytical
functions of temperature and applied field. In spite of the absence of true
phase transitions the analysis of the entropy and specific heat reliefs over
H-T plane allows to discern the "pseudo-phases" with specific character of spin
fluctuations and define the lines of more or less sharp "pseudo-transitions"
between them.Comment: 18 pages, 16 figure
Inverse problems for Schrodinger equations with Yang-Mills potentials in domains with obstacles and the Aharonov-Bohm effect
We study the inverse boundary value problems for the Schr\"{o}dinger
equations with Yang-Mills potentials in a bounded domain
containing finite number of smooth obstacles . We
prove that the Dirichlet-to-Neumann operator on determines
the gauge equivalence class of the Yang-Mills potentials. We also prove that
the metric tensor can be recovered up to a diffeomorphism that is identity on
.Comment: 15 page
- …