391 research outputs found

    Nitinol Carbofilm coated stents for peripheral applications: Study in the porcine model

    Get PDF
    Purpose: Testing the safety and foreign body reaction (FBR) of a nitinol self-expandable carbon-coated stent system in the porcine animal model at different follow-up (FU) periods. Methods: Fifteen minipigs received 30 carbon-coated self-expandable nitinol stents in iliac arteries. Explants were carried out at 7 (3 animals), 30 (4 animals), 90 (4 animals) and 180 (4 animals) day FU, for evaluation of acute, sub-acute and chronic biological response to the implanted devices. Histological, immunohistochemical, histomorphometric and scanning electron microscopy (SEM) analyses were performed to assess inflammatory reaction, endothelialization process, neointimal growth and cellular composition. Results: Thirty stents were successfully implanted. No mural thrombi were observed at gross examination or by angiography. Histologically no significant inflammatory reaction was detected: the stents appeared covered by a thin monolayer of endothelial cells even at 7 day FU. The neointima presented homogeneous growth and moderate thickness after 30, 90 and 180 days explants (0.38± 0.36 mm, 0.33± 0.30 mm, 0.27± 0.25 mm respectively). Internal and external elastic laminae were intact in 95% of stented arteries. Histological data validations of vessel endothelialization was obtained with SEM for the seven day follow-up group. Conclusions: This study showed good remarkable technical performances, minimal FBR and biocompatibility comparable with other available pre-clinical experimentation

    Zinc(II)-methimazole complexes: synthesis and reactivity

    Get PDF
    The tetrahedral S-coordinated complex [Zn(MeImHS)(4)](ClO4)(2), synthesised from the reaction of [Zn(ClO4)(2)] with methimazole (1-methyl-3H-imidazole-2-thione, MeImHS), reacts with triethylamine to yield the homoleptic complex [Zn(MeImS)(2)] (MeImS = anion methimazole). ESI-MS and MAS C-13-NMR experiments supported MeImS acting as a (N, S)-chelating ligand. The DFT-optimised structure of [Zn(MeImS)(2)] is also reported and the main bond lengths compared to those of related Zn-methimazole complexes. The complex [Zn(MeImS)(2)] reacts under mild conditions with methyl iodide and separates the novel complex [Zn(MeImSMe)(2)I-2] (MeImSMe = S-methylmethimazole). X-ray diffraction analysis of the complex shows a ZnI2N2 core, with the methyl thioethers uncoordinated to zinc. Conversely, the reaction of [Zn( MeImS)(2)] with hydroiodic acid led to the formation of the complex [Zn(MeImHS)(2)I-2] having a ZnI2S2 core with the neutral methimazole units S-coordinating the metal centre. The Zn-coordinated methimazole can markedly modify the coordination environment when changing from its thione to thionate form and vice versa. The study of the interaction of the drug methimazole with the complex [Zn(MeIm)(4)](2+) (MeIm = 1-methylimidazole) - as a model for Zn-enzymes containing a N-4 donor set from histidine residues shows that methimazole displaces only one of the coordinated MeIm molecules; the formation constant of the mixed complex [Zn(MeIm)(3)(MeImHS)](2+) was determined

    Evidence of the Most Stretchable Egg Sac Silk Stalk, of the European Spider of the Year Meta menardi

    Get PDF
    Spider silks display generally strong mechanical properties, even if differences between species and within the same species can be observed. While many different types of silks have been tested, the mechanical properties of stalks of silk taken from the egg sac of the cave spider Meta menardi have not yet been analyzed. Meta menardi has recently been chosen as the “European spider of the year 2012”, from the European Society of Arachnology. Here we report a study where silk stalks were collected directly from several caves in the north-west of Italy. Field emission scanning electron microscope (FESEM) images showed that stalks are made up of a large number of threads, each of them with diameter of 6.03±0.58 ”m. The stalks were strained at the constant rate of 2 mm/min, using a tensile testing machine. The observed maximum stress, strain and toughness modulus, defined as the area under the stress-strain curve, are 0.64 GPa, 751% and 130.7 MJ/m(3), respectively. To the best of our knowledge, such an observed huge elongation has never been reported for egg sac silk stalks and suggests a huge unrolling microscopic mechanism of the macroscopic stalk that, as a continuation of the protective egg sac, is expected to be composed by fibres very densely and randomly packed. The Weibull statistics was used to analyze the results from mechanical testing, and an average value of Weibull modulus (m) is deduced to be in the range of 1.5–1.8 with a Weibull scale parameter (σ (0)) in the range of 0.33–0.41 GPa, showing a high coefficient of correlation (R(2) = 0.97)

    Linear Peptides-A Combinatorial Innovation in the Venom of Some Modern Spiders

    Get PDF
    In the venom of spiders, linear peptides (LPs), also called cytolytical or antimicrobial peptides, represent a largely neglected group of mostly membrane active substances that contribute in some spider species considerably to the killing power of spider venom. By next-generation sequencing venom gland transcriptome analysis, we investigated 48 spider species from 23 spider families and detected LPs in 20 species, belonging to five spider families (Ctenidae, Lycosidae, Oxyopidae, Pisauridae, and Zodariidae). The structural diversity is extraordinary high in some species: the lynx spider Oxyopes heterophthalmus contains 62 and the lycosid Pardosa palustris 60 different LPs. In total, we identified 524 linear peptide structures and some of them are in lycosids identical on amino acid level. LPs are mainly encoded in complex precursor structures in which, after the signal peptide and propeptide, 13 or more LPs (Hogna radiata) are connected by linkers. Besides Cupiennius species, also in Oxyopidae, posttranslational modifications of some precursor structures result in the formation of two-chain peptides. It is obvious that complex precursor structures represent a very suitable and fast method to produce a high number and a high diversity of bioactive LPs as economically as possible. At least in Lycosidae, Oxyopidae, and in the genus Cupiennius, LPs reach very high Transcripts Per Kilobase Million values, indicating functional importance within the envenomation process
    • 

    corecore