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Urbanization is a complex process associated with environmental changes affecting
many biotic and abiotic ecosystem components, which cause the alteration of
biological communities, habitat features, connectivity and stability. In particular, the
urbanization process is usually associated with a decrease in species richness that
parallels a general increase in the overall abundance of individuals, mostly due to
generalist and tolerant species taking advantage of the altered environmental
conditions and outcompeting and excluding native species. We here adopted a
hierarchically nested sampling design to investigate the response of ground arthropods
to the combined effects of multiple facets of urbanization, namely increased impervious
surface cover, temperature and patch isolation, measured at small, intermediate and
large spatial scale. We studied 15 plots of 150 m in diameter located in the city of Turin
(NW-Italy), along an urbanization-cover gradient ranging from suburbia to the city
center. For each plot we considered the level of urbanization at three different scales
(circular buffers with a 100, 400 and 1600 m radius). Within each plot, we identified a
control and an isolated subplot, and in each subplot, we measured ground temperature
using dataloggers and we sampled ground arthropods with pitfall traps. Firstly, by
relating ground temperature and urbanization cover, we showed that temperature
values reflected an Urban Heat Island (UHI) effect, which indicates increasing values of
temperature along the urbanization gradient. This trend was particularly evident at
large scale regarding daily and diurnal temperature, and at small scale regarding
nocturnal temperature. Secondly, we demonstrated that different groups of ground
arthropods respond differently to urbanization cover, with major effects at the largest
spatial scale. Finally, we extrapolated the differential contribution of urbanization cover,
UHI-effect and patch isolation to the observed activity density of the investigated
taxonomic groups: Coleoptera and Hemiptera were influenced by temperature,
whereas Hymenoptera, Collembola, Acari and Araneae were mainly influenced by

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



urbanization, especially in control subplots. Our results emphasize how a
multitaxonomic approach can help unravel patterns of community assembly in urban
areas.
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ABSTRACT

Urbanization is a complex process associated with environmental changes affecting many biotic and abiotic
ecosystem components, which cause the alteration of biological communities, habitat features, connectivity
and stability. In particular, the urbanization process is usually associated with a decrease in species richness
that parallels a general increase in the overall abundance of individuals, mostly due to generalist and tolerant
species taking advantage of the altered environmental conditions and outcompeting and excluding native
species. We here adopted a hierarchically nested sampling design to investigate the response of ground
arthropods to the combined effects of multiple facets of urbanization, namely increased impervious surface
cover, temperature and patch isolation, measured at small, intermediate and large spatial scale. We studied
15 plots of 150 m in diameter located in the city of Turin (NW-Italy), along an urbanization-cover gradient
ranging from suburbia to the city center. For each plot we considered the level of urbanization at three
different scales (circular buffers with a 100, 400 and 1600 m radius). Within each plot, we identified a
control and an isolated subplot, and in each subplot, we measured ground temperature using dataloggers and
we sampled ground arthropods with pitfall traps. Firstly, by relating ground temperature and urbanization
cover, we showed that temperature values reflected an Urban Heat Island (UHI) effect, which indicates
increasing values of temperature along the urbanization gradient. This trend was particularly evident at large
scale regarding daily and diurnal temperature, and at small scale regarding nocturnal temperature. Secondly,
we demonstrated that different groups of ground arthropods respond differently to urbanization cover, with
major effects at the largest spatial scale. Finally, we extrapolated the differential contribution of urbanization

cover, UHI-effect and patch isolation to the observed activity density of the investigated taxonomic groups:
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Coleoptera and Hemiptera were influenced by temperature, whereas Hymenoptera, Collembola, Acari and
Araneae were mainly influenced by urbanization, especially in control subplots. Our results emphasize how a
multitaxonomic approach can help unravel patterns of community assembly in urban areas.

Keywords: UHI-effect, fragmentation, activity density, multitaxonomic approach

INTRODUCTION

Land-use change has been recognized as one of the major drivers affecting biodiversity (Sala et al. 2000)
and, over the recent decades, the conversion of natural lands into urban areas has been greatly increasing
worldwide (Seto et al. 2011). From an ecological standpoint, urban ecosystems are associated with
substantial changes in the physical environment, among which the increasing nutrient and pollution levels
are the most evident (Parris 2016). However, other physical alterations may affect urban areas too. For
instance, due to the amount of area characterized by a high built-up cover, ambient temperature in city cores
is typically 1.5-2°C higher than in the rural surroundings, i.e. the Urban Heat Island (UHI) effect (Oke 1982;
Arnfield 2003). Higher urban temperatures mainly stem from an anthropogenic release of heat, combined
with the heat stored and re-radiated by massive and complex urban structures (Rizwan et al. 2008).
Urbanization effects are apparent also at a landscape scale, as the continuous growth of built-up areas
interrupts the semi-natural habitats surrounding cities, creating partially or completely small isolated patches
(Parris and Schneider 2009; Rotholz and Mandelik 2013). In addition, the residual natural habitat is often
converted into highly impermanent and disturbed habitats, mainly derelict sites — such as brownfields,
landfills, gravel and sand pits, industrial dumps and railway lands — characterized by altered soil physical

and chemical properties (Small et al. 2003; Téthmérész et al. 2011).

Such biophysical processes linked to urbanization can have wide-ranging effects on populations and species
by altering the quantity, quality, temporal and spatial arrangement of resources (Parris 2016). For instance,
the Urban Heat Island (UHI) effect may alter the composition of biological communities due to differences
in the thermal tolerance of species, causing a shift in community composition towards species with
preferences for higher temperatures (Merckx and VVan Dyck, 2019). In addition, as suitable habitat patches in

urban environments are often isolated, they are more likely to be colonized by good rather than poor
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dispersers (see Piano et al. 2017a for an example on ground beetles and Merckx and Van Dyck 2019 for
lepidopterans). As a consequence, the number of species is expected to decrease in residual habitat patches

(McKinney 2008).

Nonetheless, urban fragments can be characterized by abundant populations of some taxa, since synanthropic
urban species may outcompete and exclude native species (Shochat et al. 2010; Mammola et al. 2018),
leading to contradictory results (e.g. Christie et al. 2010; Faeth et al. 2011; Fortel et al. 2014; Saari et al.
2016; Banaszak-Cibicka et al. 2018; Alvarez Guevara and Ball 2018). In fact, not only do organisms react
differently to environmental changes in urban areas, but they also differ in their response to the scales at
which urbanization takes place, as a result of their combination of traits, e.g. dispersal capacity or foraging
range (see Egerer et al. 2017, Merckx and Van Dyck 2019, Merckx et al., 2018b). These changes in
biodiversity may, in turn, affect key ecosystem processes, like nutrient cycling, decomposition and pest
control (Mclntyre et al., 2001). Thus, the understanding of the ecological implications of the urbanization

process is gaining more and more importance in the scientific debate.

Since ground arthropods cover all of the consumers’ trophic roles — i.e. herbivores, predators and
decomposers — they are abundant, diverse and responsible for numerous ecosystem functions. They exhibit
a variety of dispersal capacities and foraging ranges, likely being affected by urbanization at different spatial
scales (Egerer et al. 2017, Eggenberger at al. 2019). Many studies have shown how local factors and habitat
types in urban patches may negatively affect the abundance of different arthropod groups (Christie et al.
2010; Norton et al. 2014; Philpott et al. 2014; Otoshi et al. 2015; Laguki et al. 2017; Kyro et al. 2018), but
little is known about their scale of response (see Egerer et al. 2017, Merckx et al. 2018a and Merckx and Van
Dyck 2019 for some evidences). In addition, the Urban Heat Island (UHI) effect and patch isolation have
been shown to seriously affect single species dynamics (Meineke et al. 2013; Youngsteadt et al. 2015; Kaiser
et al. 2016) and community composition in urban environments (Clavero et al. 2011; Menke et al. 2011;
Piano et al. 2017a; Meineke et al. 2017; Merckx et al. 2018a; Merckx et al. 2018b). However, to date, the
extent to which the combined effect of these phenomena affects ground arthropod abundance has never been
addressed by simultaneously examining multiple taxonomic groups. Given their pivotal role in ecosystem

functionality — e.g. litter decomposition and pest control —, understanding how urbanization impacts



©CO~NOOOTA~AWNPE

multiple groups of ground arthropods is necessary to predict alterations in the provision of ecosystem

services, which has proved to be strictly dependent on biodiversity in urban areas (Ziter 2016).

Here we performed a field study to investigate the combined effect of increasing urbanization cover (i.e.
increasing impervious surfaces, Elvidge et al. 2007), urban heat-island effect and isolation within an urban
area on six orders of ground arthropods, differing in their dispersal capacity and foraging behaviour. We
selected 15 sampling sites along an urbanization gradient in the city of Turin (Italy), and in each site we
sampled arthropods in an isolated green patch (traffic roundabouts) and in the closer wider green area. In
addition, within each sampling patch, we measured temperature values during the entire sampling period. We
aimed at: i) checking the presence of the UHI-effect in the study area and the scale of temperature response
to urbanization, and whether it is influenced by patch isolation; ii) examining at which scale urbanization
mostly affects ground arthropod assemblages, by considering the percentage of impervious surfaces at
different scales; and iii) evaluating the differential effect of urbanization, UHI-effect and isolation on the
activity density of different groups of ground arthropods and whether these groups show different responses
to these parameters. We hypothesized that: i) temperature would increase along the urbanization gradient as
a consequence of the UHI-effect; ii) the scale of response would differ depending on the examined arthropod
group; and iii) arthropod groups would be differentially affected by urbanization, temperature and isolation,

showing distinctive responses.

MATERIALS AND METHODS

Sampling design

This study was conducted in the metropolitan area of Turin (NW-Italy, approximately 900,000 inhabitants),
within 15 km of the city center. The city of Turin was founded by the Romans around the year 50 B.C. and it
is located between the Western Alps and the beginning of the Po plain in the region of Piedmont. The

altitude ranges between 220 and 280 m a.s.l. and the climate is continental.

In order to test the effect of patch isolation independently from urbanization level, we adopted a specific

sampling design consisting of a random selection of a total of 15 sites (plots) with open vegetation along an



©CO~NOOOTA~AWNPE

urbanization gradient: from less urbanized areas in the suburbia to the city center (Fig. 1). In order to
examine how patch isolation affects the community of ground arthropods, in each plot we identified two
sampling subplots: i) an isolated subplot, located in a roundabout with open vegetation, maintained by
regular mowing, and ii) a control subplot, located in the nearest green area with the same type of vegetation,
being represented by small green urban patches (1,000 m?), urban parks or semi-natural areas at the city
borders (up to a few hundreds of hectares). The whole sampling plot —including the two subplots — was a
circular area with a diameter of 150 m (approximately 18,000 m?). We chose roundabouts as appropriate
proxies for isolated patches because they are completely surrounded by roads, which constitute a partial - or
even a complete - barrier for many organisms (Jaeger and Fahrig 2004). Both control and isolated subplots
were, and still are, managed by the public green authority of Turin, which mowed the grass once during the
study period in all subplots, thus guaranteeing the same degree of disturbance in both subplot categories.
Roundabouts ranged from 6 to 30 m radius (i.e. approximately from 150 to 2,500 m? in surface area), and
were equally distributed among three age classes (1 = less than 10 years of age ; 2 = 10 years of age; 3 =
more than 10 years of age), which were estimated from historical aerial maps using Google Earth
(https://www.google.com/earth/download/ge) (Tab. 1). The average distance between sampling plots was of

8,878 m (+1,705.6), ranging from 1,408 to 18,512 m.

In order to investigate the scale of response of ground arthropod groups to urbanization cover, we calculated
the degree of urbanization for each plot in three progressive larger buffers, defined as circles with a 100 m
(small scale), 400 m (medium scale) and 1,600 m (large scale) radius - with the roundabout as the center. By
using digital maps updated to 2017

(http://geomap.reteunitaria.piemonte.it/WEBCAT/CAPABILITIES/wms regp basecartol0bn 2017.xml) in

QGis (Quantum Gis Development 2018) with a resolution of 5 m, we delimited impervious surfaces, namely
buildings, roads and parking areas, within each buffer. We then calculated the urbanization cover as the ratio
between the area covered by impervious surfaces within the buffer and the total area of the buffer. To
explore the UHI effect, we monitored temperature at a ground level in both the isolated and the control
subplot of each sampling plot, using 30 HOBO® Pendant® Temperature Data Loggers (Onset Computer
Corporation), which were set to record temperature every hour. Data loggers were installed and shielded with

an ad-hoc, custom fabricated shield consisting of a shade cloth at the beginning of the experiment, and were
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downloaded after each sampling occasion. For each subplot we calculated the average daily (0 a.m. — 12

p.m.), diurnal (7 a.m. — 6 p.m.) and nocturnal (7 p.m. — 6 a.m.) temperatures for every sampling session.

Data collection

Within each subplot, ground-active arthropods were captured using a triplet of pitfall traps (5-10 m apart),
placed at least 20 cm from the subplot border (i.e. the road) and at least 5 m apart to increase catching
efficiency (Ward et al. 2001). Pitfall traps consisted of plastic jars (diameter 90 mm, length 110 mm) dug
into the ground, ensuring the upper edge of the glass was flush with the soil surface. Pitfall traps were filled
with 20 ml of 50% propylene glycol, which is a neutral field sampling preservative, with no attractive or
repulsive characteristics for most arthropod groups. The pitfall traps were placed on the same day (May 16th,
2017) and were emptied every three weeks for a total of three sampling sessions (June 6", June 27" and July

18" 2017).

Collected material was placed into vials containing 70% ethanol to preserve specimens. The specimens were
sorted, identified following Angelini et al. (2002) and counted. All arthropods were sorted by order or class
and by superorder in the case of the Acari. Non-arthropod organisms (e.g. Gasteropoda, Oligochaeta) and
larvae were discarded. Arthropod taxa that had been found in less than 50% of the total sampling sites (i.e.
Orthoptera, Diptera, Dermaptera, Thysanoptera, Lepidoptera, Opiliones, Pseudoscorpionida, Chilopoda,
Diplopoda and Isopoda) were also excluded from further analysis to avoid zero inflation. Finally, we retained
only 6 out of 16 arthropod orders (Coleoptera, Hymenoptera, Hemiptera, Collembola, Acari and Araneae),
which represented the dominant groups. Data from the triplets collected in the same subplot were pooled
together and, prior to data analysis, abundance data was transformed into a daily activity density (D.A:,

Brandmayr et al. 2005) following the formula:

D.A. = N/ndays * ntraps

where N is the abundance of each taxonomic group divided by the sampling effort, expressed as the product
of the number of days in which traps were active and the number of retrieved traps. This data transformation
has allowed us to standardize abundance values based on the number of effectively retrieved traps, given that

some pitfall traps were lost during the sampling season.
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Data analysis

All statistical analyses were performed with the R 3.5.3 (R Development Core Team, 2019) software.

UHI-effect

In order to investigate, the presence of the UHI-effect, we modelled the response of average daily, diurnal
and nocturnal temperatures against urbanization cover, measured as the coverage of impervious surfaces at a
small, medium and large scale. Since the levels of urbanization cover (i.e. percentage of the urbanization
surface) recorded at the three scales correlated with each other, we performed three different models for each
temperature variable via linear mixed models (LMMs, in accordance with Zuur et al. 2009), assuming a
normal distribution for dependent variables. We compared the performance of models fitted with an
urbanization level in different buffers (%Urb) and selected the model with the lowest AICc value. We
preferred the AICc over the AIC because of small dimensions of the datasets (Hurvich and Tsai 1989). In
addition, the model with the lowest AICc was kept as a reference point to calculate the AlCc differences
(AAICc) between the models, given that models with values of AAICc < 2 are judged to have substantial
support and should be considered viable alternatives to the model with the lowest AICc (Burnham and
Anderson 2002). In order to further scrutinize whether isolated subplots were characterized with a different
microclimate compared to control ones, we also included a categorical variable, distinguishing control and

isolated subplots. The models had the following structure:

y ~ %Urb + Isolation + (1+PlotID) + (1|Session)

where y indicates average daily, diurnal or nocturnal temperature, %Urb represents the percentage of
impervious surface in the buffer (i.e. the level of urbanization) and Isolation represents a categorical variable
which distinguishes the control and isolated subplots. Given the spatial (two subplots within each plot) and
temporal dependence of the data (three sampling sessions), we applied the mixed procedure to include the
plot (PlotID) and the sampling session (Session) as a random factor to account for the variations they

introduced in our samples, rather than testing for their direct effects on the dependent variables.

Response to urbanization
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In order to disentangle the relative contribution of urbanization cover, UHI-effect and isolation on the
activity density of ground arthropods and to check whether the examined groups responded to the
environmental parameters differently, we tested the predictor variables and potential interactions against the
activity density of ground arthropods via linear mixed models (LMMs, in accordance with Zuur et al. 2009).
We assumed a normal distribution for dependent variables and we used the plot (PlotID) and the sampling
session (Session) as random variables. Firstly, we explored the dataset following the standard protocol for
data exploration proposed by Zuur et al. (2010). According to Zuur et al. (2009, 2010), the inclusion of
outliers and highly correlated predictors in the regression analysis leads to misleading results — type | and Il
statistical errors. Successively, we used Cleveland’s dotplots to assess the presence of outliers in dependent
and independent variables, and we investigated multi-collinearity among covariates. The percentages of
urbanization measured in different buffers were highly correlated, as well as average, diurnal and nocturnal
temperatures (Pearson’s r > 0.7). On the other hand, temperature and urbanization were not collinear
(Pearson’s r < 0.5) according to the indications provided by Zuur et al. (2009, 2010) and therefore could be
retained within the same models. Given that predictor variables were expressed in different measurement
units, we standardized them to achieve variance homogenization prior to model fitting, as suggested in Zuur

et al. (2009).

The response of arthropod groups to environmental parameters was tested with a two-step approach. First,
for each taxonomic group, we proceeded with fitting three separated full models, one for each scale of
urbanization cover, and we selected the one with the lowest AlICc. This procedure was implemented to check
at which scale the response of each group was more evident. We also calculated the AAICc for all the other
models as the difference between the AlICc of the considered model and the AlCc of the best model, i.e. with
the lowest AICc. Models with AAICc < 2 are considered equivalent to the best model (Burnham and

Anderson 2002). The full models had the following structure:

y ~ %Urb + %Urb? + Temp + Temp? + Isolation + %Urb*Temp + %Urb*Isolation + Temp*Isolation +

(1/Session) + (1|PlotID)

where y refers to the activity density of each arthropod group, %Urb represents the percentage of urbanized

surface in the buffer, Temp represents the average daily temperature, and Isolation represents a categorical
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variable between the control and isolated subplots. The quadratic terms of predictor variables were included
to investigate the occurrence of parabolic responses. Given the spatial and temporal dependence of the data,
we applied a mixed procedure to include two grouping variables (PlotID and Session) as random factors, to
account for the variation they introduced in our samples, rather than to test for their direct effects on the
dependent variables. We adopted a gamma error distribution to keep into account the strictly positive values

of activity density data.

Secondly, for each taxonomic group, we performed a backward elimination on the selected model to obtain
the minimum adequate model, i.e. the model including only variables that influence the activity density of

the examined group.

RESULTS

UHI-effect

The level of urbanization (%Urb) ranged from 12.9% to 95.0%, with an average value of 54.8% at a small
scale (100 m), from 11.1% to 99.6% with an average value of 56.2% at a medium scale (400 m) and from
18.7% to 94.8% with an average value of 58.8% at a large scale (1,600 m), therefore covering a wide
gradient of urbanization. Mean daily temperature values recorded during the sampling period ranged
between 19.98°C and 31.85°C, with an average value of 26.14°C. Mean diurnal temperatures ranged from
21.27 °C to 40.58°C, with an average value of 30.12°C, whereas mean nocturnal temperatures ranged

between 18.29°C and 26.45°C, with an average value of 22.16°C.

Results of the statistical models showed how both daily and nocturnal temperature values significantly
increased with increasing urbanization level in every buffer, whereas diurnal temperature values showed a
significant positive relationship only with the urbanization measured in 400 m and 1,600 m buffers (Tab. 1).
In addition, according to the AICc values, the best models for daily and diurnal temperature included
urbanization cover at a large scale (1,600 m buffer), whereas the best model for nocturnal temperature
included urbanization cover at a small scale (100 m) (Tab. 1 and Fig. 2). These trends were particularly
evident in the control subplots, whereas temperature growth was much less pronounced in isolated subplots,

even if values were generally higher.
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Scale of response to urbanization

A total of 215 out of 270 pitfall traps were retrieved during the whole sampling season. We collected a total
of 99,897 individuals with a mean of 464.3 individuals per pitfall trap (see Fig. 3 for abundances of each
group). The best models (i.e. lowest AICc) included urbanization measured in the larger buffer (1,600 m
radius) for most groups, except Coleoptera and Acari, whose best models included urbanization at a small
(buffer of 100 m of radius) and intermediate (buffer at 400 m of radius) scale, respectively (Tab. 2).
However, given that the AAICc values are < 2, the response of Coleoptera could be considered equivalent at

a large scale, while for Hemiptera the response is equivalent at an intermediate scale.

Response to environmental parameters

The results of the models show a differential response to urbanization for the different taxonomic groups
(Tab. 3 and Fig. 4). The level of urbanization (%Urb) was included in the final models of all groups, except
for Coleoptera and Hemiptera, but it proved to have significant positive effect only on Acari. Temperature
was included in 4 out of 6 final models, with significant responses for three groups (Tab. 3 and Fig. 5).
While Coleoptera and Acari proved to be negatively affected by temperature, Araneae showed a significant
positive trend. The quadratic term was included in the final model of Acari with a significant negative effect.
Isolation was included in 5 out of 6 groups and we observed significantly higher values of activity density in
control subplots than in isolated subplots in 3 out of 5 groups, namely Hymenoptera, Acari and Araneae
(Tab. 3 and Fig. 6). The interaction between urbanization level (%Urb) and isolation was included in 4 out of
6 final models, with significant lower values of activity density in isolated subplots compared to the control
subplots, with increasing urbanization for Hymenoptera, Acari and Collembola, whereas Araneae showed the
opposite trend (Tab. 3 and Fig. 4). The interaction between isolation and temperature was included in the
final model of Hemiptera and Acari, but only the former showed a significant effect (Tab. 3 and Fig. 5), with
temperature negatively affecting this group in isolated subplots more than in control subplots. The interaction
between urbanization levels and temperature was included in the final model of Acari with a significant
positive effect, thus underling how temperature positively affects this group in highly urbanized areas (Tab. 3

and Fig. 7).
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DISCUSSION

Urbanization is expected to impact biodiversity and, consequently, ecosystem functioning due to the
combined effect of multiple interacting pressures — increasing impervious surfaces, increasing temperature
and habitat fragmentation. Thanks to a hierarchical, nested sampling design we were able to evaluate the
differential role of impervious surfaces and isolation on the UHI-effect, and tested the combined effect of

these pressures on the activity density of six ground arthropod groups.

Our first aim was to check whether the UHI-effect was actually ongoing by relating recorded temperature
values with urbanization at a small, medium and large scale, and whether isolation could affect this
parameter. We hypothesized that temperature would increase along the urbanization gradient as a
consequence of the UHI-effect and our results confirmed our hypothesis. We revealed that temperature
values observed during the sampling period significantly increased along the urbanization gradient,
confirming the presence of a UHI-effect in the city of Turin, especially at night. Similar trends were
observed by Diamond et al. (2014) and Merckx et al. (2018a) in Ohio (USA) and Belgium (Europe)
respectively. However, only nocturnal temperature was mainly influenced by urbanization at a local scale —
possibly because of the buildings releasing heat stored during the day — while daily and diurnal
temperatures better reflect urbanization on a larger scale. As the scale increases, the influence of the
adjoining land-uses decreases (Ziter et al. 2019). Thus, we can suppose that night temperatures can be
mitigated by the surrounding land cover and the UHI-effect is mainly reflected on a local scale. In addition,
nocturnal temperature measured at ground level, like as in this study, seems to be more influenced by
microscale site characteristics than air temperature as reviewed by Arnfield et al. (2003). Conversely, during
the day, the heat absorbed by impervious surfaces probably creates extremely isolated temperature islands,
limiting the possible mitigating effects of surrounding land use. These results point out how urbanization
may have climatic repercussions even at a very local scale, exacerbating the UHI-effect and transforming
cities into climatic mosaics. This phenomenon has been observed in the city of Baltimore (USA), where the
center is 5-10°C warmer than the surrounding area (Brazel et al. 2000; George et al. 2007). In addition, our
results demonstrated that isolated patches, such as roundabouts, have significantly higher temperature values

compared to control ones and their temperature values appear to be less influenced by urbanization compared
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to the control sites. This is in accordance with the literature, since altered physical and chemical conditions,
such as microclimate alteration, have been documented in ruderal habitats, like road edges, as a result of road
operation and traffic (Parris and Schneider 2008), further contributing to the creation of a climatic mosaic in
cities. Moreover, control patches can be influenced by surrounding land use, e.g. tree canopy cover of
adjacent forested areas may mitigate the UHI-effect (Ziter et al. 2019), while this is not possible in isolated

patches.

Our second aim was to examine to what scale urbanization could affect ground arthropods, by considering
the percentage of impervious surfaces at a small, medium and large scale. We showed that responses of
ground arthropods were better explained by large scale urbanization, contradicting our hypothesis. These
outcomes apparently contradict literature, since several works highlight how local factors usually have a
stronger effect than landscape factors (Angold et al. 2006; Small et al. 2006; Shwartz et al. 2013; Bennett
and Lovell 2014; Do et al. 2014; Philpott et al. 2014; Otoshi et al. 2015; Kyrd et al. 2018), even if Delgado
de la Flor et al. (2017) and McCary et al. (2018) observed how covariation between local and landscape
factors affect ground-active arthropods. In particular, McCary et al. (2018) highlighted how the shared
variance between local, i.e. habitat type, landscape and landscape fragmentation variables explained half of
the variation in several ground-active arthropods, whereas Delgado de la Flor (2017) evidenced a combined
effect of local habitat type and buildings in the landscape on ground beetle community composition.
However, as habitat types differed profoundly in these studies, it remained less clear to what extent the
measured response was a consequence of habitat type or urbanization per se. Since we consistently sampled
the same habitat type along the urbanization gradient, we were able to disentangle the scale of response
without confounding factors, underpinning how urbanization affects ground arthropods at a large scale. The
only exception is represented by Acari, which demonstrated a medium scale response, whereas, according to

the minimum adequate model, Coleoptera were not affected by urbanization.

Our third aim was to evaluate the differential effect of urbanization, the UHI-effect and isolation on the
activity density of different taxonomic groups and whether the examined groups showed different responses
to these environmental parameters. We hypothesized arthropod groups would be differentially affected by

urbanization, temperature and isolation, showing idiosyncratic responses, and our results confirmed our
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hypothesis. In respect to this, our sampling design was particularly suitable in disentangling the effect of

patch isolation and urbanization on the different taxonomic groups here investigated.

Our results showed that Acari and Araneae were mostly affected by urbanization, as their final models
included all the three examined environmental parameters, namely urbanization cover, temperature and patch
isolation. These results are in accordance with the review provided by El-Sabawii (2018), who highlighted
how predator groups, such as Acari and Araneae, are more affected by urbanization than others. A weaker
response was observed for Hymenoptera, here mainly represented by ants, Collembola and Hemiptera,
mainly represented by aphids, whose final models included two parameters. In particular, patch isolation
showed a significantly negative effect for all groups, suggesting how their fitness in urban environments may
be negatively affected by their low dispersal. Coleoptera showed the weakest response, as they were only
affected by one parameter, namely temperature. This result may be due to the heterogeneous composition of

Coleoptera in terms of feeding guilds, with the response of each guild being masked by the others.

By using the percentage of impervious surfaces as a proxy of urbanization, we have highlighted how this
parameter alone does not affect examined taxonomic groups, except for Acari that showed a significant
positive trend with increasing urbanization. However, if we consider the interaction between urbanization
cover and patch isolation, we could highlight extremely variable responses among taxonomic groups: in
particular, Collembola and Hymenoptera showed a positive and negative trend in control and isolated
patches respectively with increasing urbanization, whereas Araneae showed the opposite trend. Although
species richness positively responds to increasing availability of natural habitats even in anthropogenic
environments (e.g. Piano et al. 2017b), contradictory results are common when analysing individual
densities. For instance, Kotze et al. (2011) highlighted how in certain cities the abundance of beetles
decreased with increasing urbanization, while in others this pattern was less consistent, or even opposite, in
the case of communities dominated by introduced species (Niemeld and Kotze 2009). Such inconsistent
responses reflect the complex nature of urban habitats and urban arthropod communities. On the one hand,
pollution - as well as the high level of impermanence in urban habitats - may lead to an increased
stochasticity in environmental conditions (Parris 2016), which may negatively affect particular groups. For

instance, predators, like spiders, are expected to be sensitive to pollution because they feed at higher trophic
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levels, where toxins and pollutants tend to accumulate (see El-Sabawii 2018 for a review on this topic). On
the other hand, urban patches provide a high availability of trophic resources (Parris 2016), which might
favour generalist and alien species. For instance, pest arthropods, like some mites, are expected to increase in
urban areas, due to human activity that eradicate native predators (Shocat et al. 2010). Similarly, omnivores,
such as ants, which here represent 95% of Hymenoperans, are probably favoured in urban areas by the
increase of anthropogenic food resources (El-Sabawii 2018). These changes at different trophic levels may
have repercussions on the entire trophic food web, compromising the ecosystem services provided by the
ground arthropod fauna, such as litter decomposition or pest control. Model outcomes displayed opposite
trends of arthropod groups against temperature, which show a negative effect on Coleoptera and Acari and a
positive effect on Araneae; whereas Hemiptera are favoured by temperature in control patches and
disfavoured in isolated ones. Overall, the response to temperature increase has been shown to be extremely
variable across arthropod groups as a consequence of variable physiological heat tolerance in ectotherms
(Youngsteadt et al. 2017). Increasing temperature may, in fact, favour the fitness of those organisms with a
wide thermal tolerance breadth, whereas species with a narrow thermal tolerance breath will be negatively
affected (Sunday et al. 2012). This is especially true at mid-latitudes, as demonstrated by physiological tests,
which showed that the lowest thermal tolerance to the UHI effect is observed between 30° and 35°N or S
(Chown and Duffy 2015), whereas response patterns within the temperate zone showed contradictory results
(Pelini et al. 2014). On the basis of measured physiological tolerances, two recent studies have predicted that
mid-latitudes (between 20° and 40°) will encompass strong variability among taxa regarding the effects of
urban warming and climate change on their fitness (Kingsolver et al. 2013; Chown and Duffy 2015).
Moreover, the response of arthropod groups to environmental temperature may also be mediated by other
environmental parameters, as demonstrated by the final model of Acari, which included the interaction
between the urbanization cover and temperature. In respect to this group, higher temperatures have a
negative effect on activity density, but this effect decreases and disappears with increasing urbanization
cover, suggesting how the effect of urbanization sensu stricto may override the UHI-effect. In addition, the
response to the UHI-effect may be even more complex since it seems to be mediated by life-history traits,

such as dispersal capacity (Merckx et al. 2018a). Our results confirm such a response to temperature
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increase, pointing out how the repercussions of the UHI effect are extremely hard to predict and therefore

mitigate.

It should be noted that temperature data recorded in the field with dataloggers is highly influenced by shield
methods and ad-hoc, custom-fabricated shields, such as those used in this work, and may produce bias in
temperature measures, especially in urban areas (Terando et al. 2017). Therefore, these results should be

interpreted with caution.

Finally, we observed a consistent negative effect of isolation on 5 out of 6 taxonomic groups with significant
results for Hymenoptera, Acari and Araneae. Moreover, we proved that this effect is even stronger at
increasing levels of urbanization. Despite always showing higher values in control vs isolated patches,
spiders represent an exception to this pattern since their abundance in isolated patches increases with the
rising level of urbanization. This result contradicts literature, since Braaker et al. (2014) demonstrated how
isolated surrogates of natural habitats in urban areas, such as green roofs, might sustain populations of highly
dispersive arthropods, e.g. bees and weevils, but limit poor dispersers, e.g. carabids and spiders. However, in
some cases (e.g. small Linyphiids or young instars of Lycosids) spiders may show high dispersal capacity via
ballooning, therefore overcoming the limits imposed by isolation. Therefore, according to our results,
isolated patches in urban areas might be considered as islands surrounded by an unhospitable matrix that
limits the dispersion of organisms. While habitat connectivity between isolated patches does not represent a
limit for highly dispersive groups, it might severely limit poor dispersers, with serious repercussions on

biodiversity.

Our results emphasize how a multitaxonomic approach may help in unravelling apparently contradictory
patterns in urban areas. Indeed, we isolated the response of taxonomic groups on an urbanization level, UHI-
effect and patch isolation, which may act in opposite directions depending on the sensitivity of each group.
In addition, we highlighted how ground arthropod responses mainly occur on a large scale. In conclusion,
urbanization has negative ecological repercussions by diversely affecting the abundance of several
taxonomic groups of ground arthropods, which play a central role in a variety of processes, or represent a
food source for higher trophic levels, thus suggesting potential negative effects on ecosystem functionality

and services.
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Tables

Table 1 AICc and AAICc values for models performed with urbanization at small, medium and large scale and estimated parameters and p-values (in brackets)

for models performed on temperature variables against urbanization (%Urb) and patch isolation (Isolation) in each buffer. The best models and significant results

are reported in bold.

DAILY TEMPERATURE (°C) DIURNAL TEMPERATURE (°C) NOCTURNAL TEMPERATURE (°C)
100 m 400 m 1600 m 100 m 400 m 1600 m 100 m 400 m 1600 m
AlCc 3433 341.6 338.0 424.9 4231 419.9 241.9 246.0 245.7
AAICc 5.3 3.6 0 5 3.2 0 0 4.1 3.8
0.024+0.009 0.025+ 0008 0.036 + 0.010|0.027 + 0.016 0.033 +0.015 0.051+0.018| 0.02+0.004 0.017 +0.004 0.021 + 0.005
0
o (0.009) (0.003) (<0.001) (0.085) (0.027) (0.006) (<0.001) (<0.001) (<0.001)
1.29+0478 135+0471 14+0460 | 2.41+0854 25+0.842 258+0.826 |0.133+0.231 0.198 +0.238 0.227 +0.238
Isolation
(0.010) (0.005) (0.003) (0.006) (0.004) (0.003) (0.565) (0.407) (0.344)
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Table 2 AICc and AAICc values for models performed with urbanization at small, medium and large scale. The best models, namely those with the lowest value
of AICc, are reported in bold. AAICcs are calculated as the difference between the AlCc of the examined model and the AlICc of the best model. Models with

AAICc < 2 could be considered as equivalent of the best model.

100m 400 m 1600 m
AlCc 558.5 561.2 560.0
Coleoptera
AAICc 0 2.7 1.5
AlCc 579.9 578.0 575.4
Hymenoptera
AAICc 4.5 2.6 0
AlCc 448.0 446.8 4455
Hemiptera
AAICc 25 13 0
AlCc 602.6 601.9 596.8
Collembola
AAICc 5.8 5.1 0
AlCc 570.1 563.8 567.6
Acari
AAICc 6.3 0 3.8
AlCc 424.7 424.2 419.3
Araneae
AAICc 5.4 4.9 0
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Table 3 Estimated parameters * standard errors and p-values (in brackets) of final models selected for each taxonomic group. Significant results are reported in

bold.
Scale of %Urb:
Taxon %Urb %Urb? Temp Temp? Isolation %Urb: Isolation | Temp: Isolation
response Temp
-0.434 £ 0.121
Coleoptera Small - - - - - - -
(<0.001)
0.206 + 0.180 -0.472£0.098 | -0.208 + 0.104
Hymenoptera Large - - - - -
(0.252) (<0.001) (0.045)
0.089 + 0.184 -0.352 £ 0.184 -0.408 + 0.187
Hemiptera Large - - - - -
(0.629) (0.056) (0.029)
0.251 -0.137 -0.563
Collembola Large - - - -
(0.252) (0.436) (0.002)
0.920 £ 0.275 -0.581 £+ 0.168 | -0.148 + 0.093 | -0.466 £ 0.207 | -0.546 + 0.210 0.417+£0.239 | 0.401 +0.137
Acari Medium -
(<0.001) (<0.001) (0.003) (0.025) (0.009) (0.082) (0.003)
-0.014 + 0.008 0.103 £ 0.046 -1.06 £ 0.422 0.015 + 0.006
Araneae Large - - - -
(0.102) (0.026) (0.012) (0.020)
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Figure captions

Fig. 1 Map of the sampling plots with buffers (black circles) and impervious areas evidenced (dark grey).

Fig. 2 Predicted values and confidence intervals for daily, diurnal and nocturnal temperatures modelled
against urbanization cover (%Urbanization) in both control (solid line) and isolated (dashed line) sites.
Predicted values modelled against %Urbanization were calculated using the buffer included in the selected

model for each temperature measure.

Fig. 3 Total abundance of ground arthropods sampled during the study.

Fig. 4 Predicted values and confidence intervals for activity density of the different groups modelled against
urbanization cover (%Urbanization) in both control (solid line) and isolated (dashed line) subplots, with
observed values (green dots = control subplots; grey dots = control subplots). Predicted values modelled

against %Urbanization were calculated using the buffer included in the selected model for each taxonomic

group.

Fig. 5 Predicted values and confidence intervals for activity density of Coleoptera, Acari and Araneae
modelled against daily temperature in both control (solid line) and isolated (dashed line) subplots, with

observed values (green dots = control subplots; grey dots = control subplots).

Fig. 6 Boxplots representing observed activity density values for each taxonomic group in control and
isolated sites. Asterisks indicate significant differences according to statistical models (significance level:

*0.05, **0.01, ***0.001).

Fig. 7 Predicted values and confidence intervals for activity density of Acari and the interaction between
urbanization and temperature. Lines represent the temperature effect at low (0%, continuous line),

intermediate (50%, dashed line) or high (100%, dotted line) urbanization cover.
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All the best,
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Associate Editor
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