641 research outputs found
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
A new causal discovery method, Structural Agnostic Modeling (SAM), is
presented in this paper. Leveraging both conditional independencies and
distributional asymmetries in the data, SAM aims at recovering full causal
models from continuous observational data along a multivariate non-parametric
setting. The approach is based on a game between players estimating each
variable distribution conditionally to the others as a neural net, and an
adversary aimed at discriminating the overall joint conditional distribution,
and that of the original data. An original learning criterion combining
distribution estimation, sparsity and acyclicity constraints is used to enforce
the end-to-end optimization of the graph structure and parameters through
stochastic gradient descent. Besides the theoretical analysis of the approach
in the large sample limit, SAM is extensively experimentally validated on
synthetic and real data
Benchmarking in cluster analysis: A white paper
To achieve scientific progress in terms of building a cumulative body of
knowledge, careful attention to benchmarking is of the utmost importance. This
means that proposals of new methods of data pre-processing, new data-analytic
techniques, and new methods of output post-processing, should be extensively
and carefully compared with existing alternatives, and that existing methods
should be subjected to neutral comparison studies. To date, benchmarking and
recommendations for benchmarking have been frequently seen in the context of
supervised learning. Unfortunately, there has been a dearth of guidelines for
benchmarking in an unsupervised setting, with the area of clustering as an
important subdomain. To address this problem, discussion is given to the
theoretical conceptual underpinnings of benchmarking in the field of cluster
analysis by means of simulated as well as empirical data. Subsequently, the
practicalities of how to address benchmarking questions in clustering are dealt
with, and foundational recommendations are made
First impressions: A survey on vision-based apparent personality trait analysis
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft
Is One Epoch All You Need For Multi-Fidelity Hyperparameter Optimization?
Hyperparameter optimization (HPO) is crucial for fine-tuning machine learning
models but can be computationally expensive. To reduce costs, Multi-fidelity
HPO (MF-HPO) leverages intermediate accuracy levels in the learning process and
discards low-performing models early on. We compared various representative
MF-HPO methods against a simple baseline on classical benchmark data. The
baseline involved discarding all models except the Top-K after training for
only one epoch, followed by further training to select the best model.
Surprisingly, this baseline achieved similar results to its counterparts, while
requiring an order of magnitude less computation. Upon analyzing the learning
curves of the benchmark data, we observed a few dominant learning curves, which
explained the success of our baseline. This suggests that researchers should
(1) always use the suggested baseline in benchmarks and (2) broaden the
diversity of MF-HPO benchmarks to include more complex cases.Comment: 5 pages, with extended appendice
ChaLearn Looking at People and Faces of the World: Face AnalysisWorkshop and Challenge 2016
We present the 2016 ChaLearn Looking at People and Faces of the World Challenge and Workshop, which ran three competitions on the common theme of face analysis from still images. The first one, Looking at People, addressed age estimation, while the second and third competitions, Faces of the World, addressed accessory classification and smile and gender classification, respectively. We present two crowd-sourcing methodologies used to collect manual annotations. A custom-build application was used to collect and label data about the apparent age of people (as opposed to the real age). For the Faces of the World data, the citizen-science Zooniverse platform was used. This paper summarizes the three challenges and the data used, as well as the results achieved by the participants of the competitions. Details of the ChaLearn LAP FotW competitions can be found at http://gesture.chalearn.org
Filtering participants improves generalization in competitions and benchmarks
International audienceWe address the problem of selecting a winning algorithm in a challenge or benchmark. While evaluations of algorithms carried out by third party organizers eliminate the inventor-evaluator bias, little attention has been paid to the risk of over-fitting the winner's selection by the organizers. In this paper, we carry out an empirical evaluation using the results of several challenges and benchmarks, evidencing this phenomenon. We show that a heuristic commonly used by organizers consisting of pre-filtering participants using a trial run, reduces over-fitting. We formalize this method and derive a semi-empirical formula to determine the optimal number of top k participants to retain from the trial run
Judging competitions and benchmarks: a candidate election approach
International audienceMachine learning progress relies on algorithm benchmarks. We study the problem of declaring a winner, or ranking "candidate" algorithms, based on results obtained by "judges" (scores on various tasks). Inspired by social science and game theory on fair elections, we compare various ranking functions, ranging from simple score averaging to Condorcet methods. We devise novel empirical criteria to assess the quality of ranking functions, including the generalization to new tasks and the stability under judge or candidate perturbation. We conduct an empirical comparison on the results of 5 competitions and benchmarks (one artificially generated). While prior theoretical analyses indicate that no single ranking function satisfies all desired properties, our empirical study reveals that the classical "average rank" method fares well. However, some pairwise comparison methods can get better empirical results
- …
