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Abstract

To achieve scientific progress in terms of building a cumulative body of knowledge,

careful attention to benchmarking is of the utmost importance, requiring that

proposals of new methods are extensively and carefully compared with their

best predecessors, and existing methods subjected to neutral comparison stud-

ies. Answers to benchmarking questions should be evidence-based, with the

relevant evidence being collected through well-thought-out procedures, in

reproducible and replicable ways. In the present paper, we review good

research practices in benchmarking from the perspective of the area of cluster

analysis. Discussion is given to the theoretical, conceptual underpinnings

of benchmarking based on simulated and empirical data in this context.

Subsequently, the practicalities of how to address benchmarking questions in

clustering are dealt with, and foundational recommendations are made based

on existing literature.
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1 | INTRODUCTION

Presently, many domains of science are shaken to their foundations by powerful calls for scientific integrity, for
buttressing up claims in evidence-based ways, for setting up studies in reproducible and replicable manners, and for
adhering in all possible respects to good research practices (see, e.g., Haibe-Kains et al., 2020; Hutson, 2018). This
tremor has also hit the fields of statistics, machine learning, and data mining.

Within these fields, both users and methodological researchers face a major challenge when having to choose
among a wealth of new and old methods. Obviously, a proper choice requires addressing the question of which alter-
natives are optimal in some respect, necessitating comparative evaluation or benchmarking. Linking up with the calls
referred to above, answers to benchmarking questions should be evidence-based, with the relevant evidence being
collected through well-thought-out research practices, in reproducible and replicable ways.

In the present article, we review good research practices in method benchmarking from the perspective of the
area of cluster analysis. The reason for this choice is that, whereas there is an initial impetus to a benchmarking tra-
dition in bioinformatics (Weber et al., 2019) as well as in many subdomains of statistics and machine learning,
including the supervised part of the domain of statistical learning (see, e.g., Eugster, 2011; Hoffmann et al., 2019;
Stone, 1974), the situation is rather different for unsupervised learning, and in particular cluster analysis. Indeed,
from the early days on, several prominent researchers in the clustering area have been emphasizing that very many
choices have to been made in the selection of a proper clustering strategy (e.g., Anderberg, 1973; Dubes & Jain, 1976;
Hartigan, 1985). Moreover, only very few theoretical guidelines appeared to be available for this selection, in spite of
praiseworthy attempts to list formal characteristics of useful clustering methods (Jardine & Sibson, 1971) as well as
so-called “admissibility criteria” (Fisher & Van Ness, 1971; Rubin, 1967). As a way out, one necessarily had to turn to
benchmarking studies, with instances of seminal benchmarking attempts being reported by, for example, Baker
(1974), Hubert (1974), and especially Milligan (Milligan, 1980, 1985; Milligan et al., 1983; Milligan & Cooper, 1985;
for overviews of earlier benchmarking work in the area, see, e.g., Jain & Dubes, 1988; Milligan, 1981a, 1981b). Later
on, there has been some follow-up to this seminal work (e.g., Anderlucci & Hennig, 2014; Arbelaitz et al., 2013; Costa
et al., 2022; Hennig, 2022; Rossbroich et al., 2022; Schepers et al., 2006; Shireman et al., 2017; Steinley, 2003;
Steinley & Brusco, 2008; Šulc & Řezankov�a, 2019; Wilderjans et al., 2013). Nevertheless, there is much less of a
benchmarking tradition in the clustering area than in the field of supervised learning. This is evidenced by the fact
that not infrequently new methods are proposed without a sound comparison with their best predecessors, by a broad
lack of neutral comparisons of existing methods, by a dearth of recommendations and guidelines for benchmarking,
and even by a lack of philosophical scrutiny of the issue (Watson, 2023). At least part of all this goes with the fact that
in supervised classification, classes and class membership are known a priori, which naturally leads to a concrete
metric for evaluating performance (viz., the error rate or proportion of objects misclassified: see, e.g., Schiavo &
Hand, 2000). In an unsupervised clustering context, however, classes and class memberships are unknown, and must
be “discovered” by the clustering algorithm, which hampers determining how well a specific approach is performing
in real data.

In this article, we present an in-depth review of the fundamental conceptual underpinnings of good research
practices for benchmarking in the cluster analysis domain, along with a set of foundational guidelines based on
existing literature. The latter will include guidelines that are relevant for method benchmarking in general as well
as guidelines that are specific for clustering.—That being said, the specific guidelines may also serve as a source of
inspiration for areas of statistics, machine learning, and data mining other than clustering. Indeed, because of the
absence of straightforward evaluation criteria, the clustering area is obliged to reflect more deeply on principles of
benchmarking, unlike other areas that may be inclined to go too quickly into autopilot ways of comparative evalu-
ation.—Due to the tendency of established recommendations to be often ignored, the guidelines will reiterate
some well-wrought best practices as well as supplement them with new advice. All in all, we hope that this
endeavor will foster scientific debate on benchmarking, and that this will subsequently lead to improved research
practices.

The remainder of this article is structured as follows: Section 2 presents an in-depth review of the conceptual under-
pinnings of benchmarking in the clustering area; Section 3 continues with a discussion of the practicalities of how to
address benchmarking questions in clustering along with foundational guidelines; Section 4 presents a handful of illus-
trative examples.
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2 | CONCEPTUAL UNDERPINNINGS

In this section, we outline a conceptual framework for benchmarking studies of clustering. Four considerations are
central to inform the key decisions to be drawn in such studies: (1) features of the clustering methods to be compared
in them, (2) the data to be used for benchmarking, (3) the quality or performance criteria focused on, and (4) the type
of answers benchmarking studies may lead to. We will deal with these successively.

2.1 | Features of clustering methods to be compared in benchmarking studies

Benchmarking in statistical data analysis pertains to a comparison of different data-analytic methods. Importantly, one
should pay ample attention to the fundamental features that characterize these methods and that differentiate between
them, as those features may have major relevance both for understanding the methods and for informing decisions in
benchmarking. In this subsection we will do so for clustering methods, which may be characterized in terms of features
of the points of departure for the clustering process (Section 2.1.1) and features of that process itself (Section 2.1.2).

2.1.1 | Points of departure for clustering process

Point of departure 1: Research goal for clustering
The goal of any clustering process is to learn or induce unknown groups from the data, with the groups being defined
in terms of their memberships, that is, the clusters' extension, and/or their characteristics, definitions, and member-
ship rules, that is, the clusters' intension (Leibniz, 1764). The aim underlying this can be the search for the “true”
clustering (see Hennig (2015c) for a discussion of that concept), which can be linked to the Socratic target of “carving
nature at its joints” (Plato, n.d., approximately 370 BC) and can be qualified as fundamental or “realistic.” Alterna-
tively, the underlying goal can be more pragmatic or “constructive” (Hennig, 2015b), with the ideal clustering being
optimal in terms of some extrinsic goal such as information compression, communication, or providing a suitable
basis for some kind of action. Apart from the realistic–constructive distinction, one should also consider the question
whether induction of a clustering is the only research goal at issue, or rather whether the clustering also goes with an
alternative goal, such as prediction, dimension reduction, or (biological, psychological, …) process modeling. In the
latter cases, the primary concern may be either in the clustering or in the alternative goal, even for one and the same
clustering method. As an example, a mixture of factor analyzers (McLachlan & Peel, 2000) can sometimes be used
with finding groups as primary concern (with the factor analysis part being invoked only to cope with technical com-
plications resulting from ill-conditioned data), and sometimes with the retrieval of latent dimensions underlying the
data as primary goal (with the mixture part being invoked only to deal with a secondary issue of population
heterogeneity).

Point of departure 2: Data for clustering
An important second point of departure for a clustering process is the type of data that are to be subjected to the
clustering method. Importantly, the type of data structure is discussed in this subsection as a characteristic of a
clustering method, and not from the viewpoint of the type of data to be used for the benchmarking (although the
type of data that is required by the clustering method obviously also impacts the type of data to be used for the
benchmarking).

Two basic data structures are most frequently encountered in the clustering domain: object by variable data and
object by object proximity (similarity or dissimilarity) data with unstructured object or variable data modes. Apart from
these, quite a few more complex data structures may be encountered as well, including graph or network data,
multiway data, multiblock data (of which multilevel data are a special case), and data with structured object or variable
data modes (e.g., time or space) such as sequence or functional data.

Leaving aside semi-supervised cases, data for a cluster analysis normally do not include a priori known cluster
memberships. If such information were nonetheless available, it would be kept apart from the “internal” part of the
data that is to be used in the cluster analysis, and could optionally be used afterwards as “external” information to vali-
date clustering results.
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2.1.2 | Clustering process

The clustering process comprises three steps: (1) pre-processing the data, (2) the actual cluster analysis, and
(3) post-processing the output of the second step.

Step 1: Pre-processing the data
More modest forms of pre-processing include various ways for handling missing data and various kinds of data selec-
tion. Data selection can refer to the experimental units or objects with, for example, a removal of outliers before the
actual cluster analysis. Alternatively, selection can also refer to the variables included in the data set. Otherwise, data
selection can take place both before and during the actual cluster analysis, with only the former qualifying as data pre-
processing.

A somewhat more involved type of pre-processing is that of transformations of variables or even entire data blocks.
Classic examples in the clustering domain are various combinations of centering and scaling (e.g., Milligan &
Cooper, 1988; Steinley, 2004). Data transformations as a way of data-pre-processing have to be distinguished from data
transformations that are part of the actual cluster analysis (see, e.g., van Buuren & Heiser, 1989).

The most comprehensive types of pre-processing imply a conversion of the data structure into a different type of
structure before the actual cluster analysis. A classic instance of this is the conversion of object by variable data into
object-by-object proximities, for which an unlimited wealth of proximity measures could be invoked (see, e.g., Gower &
Legendre, 1986). Note that this type of conversion implies that, in benchmarking studies, clustering methods based on
proximity data can be compared with methods based on object by variable data.

Step 2: Actual cluster analysis
Aspects of the actual cluster analysis include: (a) the nature of the clusters aimed at, (b) the criterion or objective func-
tion that is to be optimized, and (c) the choice of a suitable algorithm or computational procedure.

Nature of the clusters. The clustering aimed at can be typified in terms of set-theoretic characteristics of the membership
of the clusters of interest, that is, their extension, and of organizing principles on the level of the clusters' definition,
associated features or attributes, that is, their intension. The following five questions can be helpful to characterize the
clusters' extension:

1. What is the nature of the elements of the clusters? The elements of the clusters can be objects, variables, or some other
type of entities involved in the data (for example, sources). Alternatively, in case of data that involve two or more
types of entities, such as object by variable or source by object by variable data, the elements to be clustered could be
n-tuples such as ordered pairs (of, for example, an object and a variable) in two-mode, bi- or co-clustering (see, fur-
ther, e.g., Hartigan, 1975; Van Mechelen et al., 2004).

2. Is cluster membership crisp or fuzzy? The standard form of cluster membership is crisp in nature, with elements not
belonging versus belonging to a cluster under study, formalized by membership values of 0 versus 1. Alternatively,
graded forms of membership can be considered, with membership values varying from 0 to 1, which optionally
could be formalized in terms of some fuzzy set-theoretic framework (e.g., Bezdek et al., 2005).

3. A single cluster versus a comprehensive clustering? Certain clustering methods aim at retrieving a single cluster that
in itself is optimal in some sense. Another, and far more common alternative is to look for a collection of clusters
(i.e., a clustering) that is to be assessed as a whole in some respect; in the latter case, the number of clusters in the
collection can be either pre-specified or chosen during or after the actual cluster analysis.

4. Are all elements to be clustered? This question is relevant if one is looking for a clustering, which, as a whole, is opti-
mal in some sense.

5. Is cluster overlap allowed, and, if yes, is it restricted to nested clusters? Here overlap pertains to extensional overlap.
Nestedness further means that for every pair of overlapping clusters it holds that one of the clusters is a subset of the
other. Some authors call nested clusterings hierarchical.

To typify the structure of the clusters' intension, both the within- and the between-cluster organization can be con-
sidered. Regarding the within-cluster organization, a first issue is what should be the unifying or common ground for
elements to belong to the same cluster. Possible answers include a common pattern of values for a subset of the vari-
ables, small within-cluster dissimilarities, and large similarities of elements to the centroid(s) of the cluster(s) to which
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they belong. A second issue refers to constraints on the form of the within-cluster heterogeneity, such as topological or
geometric constraints (for example, connectedness or convexity), and constraints on the within-cluster dependence
structure of variables, such as, for example, the shape implied by the within-cluster covariance matrices. As to the
between-cluster organization, one may first wonder what should be the discriminating ground for elements to belong to
different clusters. Possible answers include large between-cluster dissimilarities, (linear or quadratic—Coraggio &
Coretto, 2023) separability, and clearly distinguishable distributional shapes. Second, one may wonder whether there
are constraints on the form of the between-cluster differences, such as that all cluster centroids should lie in a low-
dimensional space.

The criterion or objective function to be optimized. Any clustering method involves some optimization, yet the nature of
the criterion that is optimized may vary considerably between methods. For example, a number of methods proceed in
a stepwise fashion, with some specific criterion being optimized in each step, but without the whole of all steps
targeting the optimization of an overall objective function. For many other methods, however, an overall objective func-
tion is in place. This may or may not refer to some kind of goodness of fit, as in, for example, a likelihood or a least
squares loss function.

The algorithm or computational procedure. For the actual optimization, clustering methods rely on computing routines.
In absence of an overall objective function, these are mere computational procedures. In presence of such a function,
they can be considered algorithms. To be sure, in almost all cases, there is no guarantee that the algorithms in question
will yield the globally optimal solutions looked for, with different algorithms, and even different runs of the same algo-
rithm, often leading to different clusterings. Major reasons for this are that the optimization problems at hand are typi-
cally nonconvex and at least partially discrete in nature, with a ubiquitous presence of local optima (see,
e.g., Steinley, 2003).

Apart from optimization-related aspects, Ackerman et al. (2021) emphasize the importance in benchmarking of
how computational procedures react to object duplication, or, slightly more general, object weights. In particular, they
draw a distinction between: (1) procedures that are affected by weights on all data sets, (2) procedures that respond to
weights on some data sets only, and (3) procedures that ignore weights.

Step 3: Post-processing the output of step 2
A final possible step in the data-analytic process concerns post-processing the output of the chosen clustering method.
This often involves a form of model selection, including the choice of the number of clusters in the final model, insofar
as this has not been chosen during the actual cluster analysis. This step could boil down to a classical selection among
different models, but also to a selection of one part within a model. As an example of the latter, one may think of the
selection of a single partition within a hierarchical clustering, conceived as a collection of nested partitions. Other forms
of post-processing imply some kind of simplification of the output. As an example, one may think of converting esti-
mated posterior cluster membership probabilities in mixture models as obtained from Bayes' rule into 0/1 membership
values.

2.2 | Data to be used for benchmarking

In the present article, we focus on dealing with benchmarking questions by means of analyses of data sets. Different
types of relevant data sets can be distinguished.

A first type is data obtained from Monte Carlo simulations. If these have been set up on the basis of a priori,
technical or artificial assumptions, we will further call them synthetic simulations, in contrast with the realistic simula-
tions to be described below.

A second type is that of empirical data (from one or more substantive domains of interest). These may or may not
include “external” true group information. Data that include such information imply an easy possible validation crite-
rion (albeit not necessarily the best or the only legitimate one: see further Section 3.3.1), yet data that do not include it
are more representative of real clustering problems in which groups are not known in advance. Empirical data sets may
be conceived as elements sampled from some population of data sets (Boulesteix, Hable, et al., 2015). Questions at this
point include how the latter population can be characterized, whether a sample at hand can be considered representa-
tive, and which sampling mechanism can be assumed to be in place. Given two or more empirical data sets, one may
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further also wonder whether they can be considered exchangeable members of some class of data sets for which, for
example, the nature of the clusters aimed at is the same. Note that whether or not this is the case will depend on the
data set features one cares about, and, hence, is “in the eye of the beholder.”

Three variants of using empirical data sets in benchmarking can further be considered. First, the data sets may be
used as given. Second, they may be modified, for example, by adding outliers or noise variables, or by removing objects
or variables. Third, they may be used as input for so-called realistic simulations, to be distinguished from the synthetic
simulations discussed above; these involve the use in the simulations of structures, parameter settings, or distributions
found in analyses of the empirical data (for an illustration, see El Abbassi et al., 2021). Examples include informing sim-
ulations to make the range of the studied factors realistic, and creating simulated data sets by applying a resampling
procedure to the residuals that result from an analysis of the empirical data.

2.3 | Quality criteria for benchmarking

For the comparative evaluation of methods that is inherently implied by any benchmarking study, numerous quality
criteria can be considered. Below, we will outline a few conceptual distinctions between possible criteria, with the pri-
mary distinction being the one between omnibus or overall formal criterion types that may be used for the evaluation
of a broad range of methods versus criteria that relate to the particular goal of the data analysis under study.

2.3.1 | Omnibus formal criteria

Optimization performance
In the presence of an objective or loss function that all to be compared methods intend to optimize, a first type of crite-
rion relates to the value of that objective function.

Stability or replicability
A second type of criteria pertains to the stability of the output of the cluster analysis, in terms of its extensional or inten-
sional aspects. Stability may be investigated in itself, for instance, by means of bootstrap samples. Alternatively, it may
also be investigated with regard to several choices in the clustering process. As to the latter, on the level of the data pre-
processing, these choices may pertain to the entry/removal of outliers, the type of transformation of variables or data
blocks, and the type of conversion of the data structure (e.g., the choice of a dissimilarity measure). On the level of the
actual data analysis, they may include algorithm initialization and the values of tuning parameters (Mishra
et al., 2022). On the level of the post-processing of the output, the choice of a type of method for model selection may
be considered.

Computational cost
A third type of criteria is the computational cost implied by the data analysis, in terms of number of operations, compu-
tational complexity, or computing time (often as a function of data size).

2.3.2 | Criteria related to the goal of the data analysis

A second group of criteria refers to the specific primary goal of the data analysis. Successively, we will consider the case
in which this goal concerns the identification of some unknown clustering, and the case of other primary goals.

Primary goal is identification of clustering
Within this subsection we draw a distinction between three types of criteria: (a) recovery performance, (b) other exter-
nal validation, and (c) internal validation (for an early reference to the distinction between external and internal valida-
tion, see Dubes & Jain, 1979).

Recovery performance. In case external validation information on the truth underlying the data is available, recovery of
some aspect of this truth is a possible criterion. In a clustering context, relevant aspects may be the true number of
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clusters, true cluster membership, true cluster characteristics (for example, the values of the cluster centroids), and the
truly relevant variables for the clustering. Note, though, that even if data go with true grouping information, this is not
necessarily the best or only legitimate validation criterion, as in cluster analysis the “truth” depends on the context and
the goals of the analysis (Hennig, 2015c), and therefore reasonable clusterings may or may not correspond with the
given grouping information.

Other external validation. Other external validation criteria may be relevant if the goal underlying the cluster analysis is
not the search for the “true” clustering, but is more pragmatic in nature. In the latter case, criteria that capture the
pragmatic goal can be considered, such as, for example, response to treatment to validate a patient clustering induced
from patient by biomarker data.

Internal validation. Internal validation criteria may reflect what constitutes a “good” or “desirable” clustering, in terms
of set-theoretic characteristics of the clusters' extension as well as organizing principles for the clusters' intension (see
Section 2.1.2). As examples, one may think of degree of extensional overlap, small within-cluster dissimilarities, and
degree of between-cluster separability.

Other primary goal
If the primary concern behind the data analysis is not the induction of a clustering but something else such as prediction,
dimension reduction, or modeling of the (biological, psychological, …) processes through which the data came about,
criteria that capture this concern can be used, such as measures of predictive quality, or of assumed underlying processes.

2.4 | Possible answers resulting from benchmarking studies

Benchmarking questions imply by definition a comparative evaluation of different methods in terms of their perfor-
mance. Answers to such questions on the basis of some benchmarking study may or may not refer to differences
between conditions in that study, with conditions pertaining to subsets of the data types or performance criteria
included in it. Answers that do not refer to such differences are called here “unconditional”; examples include state-
ments about performance rank orders of methods or about an overall winner. Answers that do refer to such differences
are called here “conditional”; such statements typically look like: “Method A outperformed method B for such and such
data types or with regard to such and such criterion types, whereas for other data and/or criterion types this rank order
does not hold or is even reversed.”

Conditional answers imply that concepts such as global optimality are to be replaced by more shaded counterparts.
If, for a given criterion, the nature of the optimal method further differs across data types, one ends up in a “one size
does not fit al” type of scenario (Strobl & Leisch, 2022), which calls for a reporting in terms of proper conditional state-
ments. A formally very similar scenario is well known in clinical trial research and occurs if there is no therapeutic
alternative that outperforms all other alternatives for all (types of) patients; this further calls for a precision medicine
approach. Likewise, within a benchmarking context, one may look for so-called optimal data-analytic regimes, that is
to say, decision rules that specify, given some criterion, for which data types which methods are to be preferred
(Boulesteix & Hatz, 2016; Doove et al., 2017). Otherwise, conditional answers may not only pertain to conditional opti-
mality of some method, but also to aspects such as telling apart conditions where different state-of-the-art clustering
methods tend to give similar results, and conditions where this is less the case and where some kind of expert interven-
tion to choose some particular result may be needed (Fütterer & Augustin, 2021).

3 | PRACTICALITIES AND FOUNDATIONAL GUIDELINES

3.1 | Choice of methods to be compared

3.1.1 | Issues

For benchmarking, two or more methods have to be chosen, which differ from one another with regard to at least one
of the three steps of the data-analytic process: (1) the input pre-processing, (2) the actual data analysis, and (3) the
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output post-processing.—For a survey of popular R packages for cluster analysis see Flynt and Dean (2016), and for a
software library of 50 clustering methods: see Thrun and Stier (2021).—Moreover, several specific aspects have to be
decided as well, including the choice of implementations, initializations, tuning parameters, convergence criteria, and
time limits.

3.1.2 | Recommendations

We propose three sets of recommendations:

• Make a suitable choice of competing methods, meaning that:
� The intended scope of the methods should be well-defined, well-justified from the point of view of the aims of the

clustering, and well-reported. Moreover, the intended scope should be covered properly. For example, within
the intended scope, the choice should be sufficiently broad and should not be limited to close neighbors or variants
of the same method, unless the intended scope would be limited to such variants.

� Do include known strong competitors, that is to say, methods that have been shown in previous studies to out-
perform others for the type(s) of problems and criteria under study (Boulesteix, 2015). Furthermore, in the search
for strong competitors, take into account that clustering methods are being developed and studied in a broad range
of research domains (including discrete mathematics, statistics, data mining, computer science, machine learning,
and bioinformatics), and therefore do not limit this search to a single research domain only.

� If methods are to be compared that differ from one another in terms of different aspects (e.g., initialization method
and type of iteration scheme, or type of variable selection and type of algorithm), consider, if meaningful and pos-
sible, to orthogonally manipulate these aspects according to a full factorial design, to enhance inferential capacity
for disentangling the main effects of each of the aspects and their interactions.

• Make full information on the competing methods available, in view of reproducibility (Donoho, 2010; Hofner
et al., 2016; Peng, 2011) and of enabling follow-up research:
� Make the code of the methods under study fully available, whenever possible via platforms such as GitHub or

Gitlab.
� Disclose full information on aspects like initialization, values of tuning parameters, convergence criteria, time

limits, random number generators and seeds.
• Organize a fair comparison in terms of the choices of specifics, with fairness meaning that particular methods are

neither wrongfully favored nor put at a disadvantage. This implies:
� that the same amount of prior information is made available to the different methods
� fair choices with regard to the specification of tuning parameters (such as the number of starts)
� fairness in terms of the number of operations/amount of computing time apportioned to the different methods

under study, with the obvious problem that the latter may depend fairly strongly on the particular implementation
that has been chosen (insofar the involved algorithms allow to tune this).

� that the same amount of time should be spent with a similar amount of expertise to implement the different
methods, handle bugs, choose tuning parameters, and so on.

3.2 | Data sets used for benchmarking

3.2.1 | Issues

In case of data that are obtained from synthetic simulations, choices have to be made regarding several aspects. The
first of these pertains to the factors that are to be manipulated in the simulations, along with the levels of each chosen
factor. Examples include the number of objects, the number of variables, the proportion of variables that are relevant
for the clustering, the number of clusters, (in)equality of cluster sizes, the cluster-generating distribution, the amount of
distributional overlap, and so on. A second aspect pertains to the experimental design of the simulation setup. The most
simple option at this point is a full factorial design. A third aspect pertains to the number of replications in each cell of
the design. See further Hennig (2018) for some considerations regarding synthetic simulations for benchmarking, partly
related to the present article.
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For the actual simulations, either own code or existing data generators can be used. Regarding the latter, over the
past decades quite a few generators have been proposed, including the Milligan (1985) algorithm for generating artifi-
cial test clusters, OCLUS (Steinley & Henson, 2005), the Qiu and Joe (2006) random cluster generation algorithm, and
MixSim (Melnykov et al., 2012). In the justification of these generators, quite some emphasis has been put on the
aspects of separability and overlap, where overlap refers to intensional rather than to extensional overlap, that is to say,
overlap in terms of variables or component distributions, with all generated clusterings being partitions. Advantages of
existing data generators include their ease of use, and comparability with results of other studies that have used the
same generators; disadvantages include that they produce a somewhat limited scope of data sets.

A blueprint of a novel device for simulating data for benchmarking in unsupervised learning has been designed by
Dangl and Leisch (2017). This blueprint comprises the plan of a web repository and an accompanying R (R Core
Team, 2017) package for the actual production of metadata objects and for the subsequent generation of data sets on a
local computer.

A promising framework for a flexible generation of simulated benchmark data sets was recently proposed by Shand
et al. (2022). Within this framework, an instance space of data sets is created on the basis of a set of features that quan-
tify the difficulty of a clustering problem from a range of perspectives. By varying the relative importance of the fea-
tures, different collections of benchmarking data sets can be obtained. A possible target in the use of the framework
could be to generate data sets that elicit performance differences between pairs of clustering methods, including relative
strengths and weaknesses of each method.

Alternatively, a collection of empirical data sets can be used, which could, for example, be retrieved from various
(general or specific, e.g., Javed et al., 2020) repositories (with recently also a few mixed empirical-simulated data reposi-
tories being proposed for cluster benchmarking: Gagolewski, 2022; Thrun & Ultsch, 2020). Such a collection may be
considered a sample from the population of all empirical data sets. Although it can be hardly anything better than a
convenience sample, it is worthwhile to try to make it as representative as possible. To draw a sample of empirical data,
either a top-down or a bottom-up approach can be followed. In a top-down approach, one starts from a profile of data
characteristics, along with common criteria of what would constitute a “good” clustering, to subsequently look for a col-
lection of data sets that sufficiently covers this profile. Alternatively, a bottom-up approach can be taken, in terms of
starting from a single data set and an in-depth analysis of what would constitute a “good” clustering for it, to subse-
quently look for a collection of data sets with similar profiles. Irrespective of the approach that is followed, one should
take into account that, within the sample of data sets, typically empirical correlations between data characteristics show
up, unlike in simulated setups in which data characteristics can usually be orthogonally manipulated. Such correlations
can hamper inferences from benchmarking studies using empirical data.

3.2.2 | Recommendations

We propose three groups of recommendations:

• Make a suitable choice of data sets and give an explicit justification of the choices made. This means that:
� the intended scope of generalization for the data sets should be well-defined, well-justified, and well-reported;
� the population of data sets of interest should be well covered;
� the data sets should be sufficient in number to allow for reliable inferences, also taking into account power issues

(see further Section 3.4);
� whenever feasible, one should consider to carefully combine synthetic simulations and empirical data as these

may yield complementary information (Friedrich & Friede, 2023; Zimmermann, 2020);
� in case of simulated data sets that differ from one another in terms of multiple aspects (e.g., sample size, degree of

cluster separability), consider, if meaningful and possible, to orthogonally manipulate these aspects according to a
full factorial design to enhance inferential capacity (see, e.g., Costa et al., 2022);

� whereas, when proposing a new method, it is typically desirable to show that this method does something useful
on some data sets that is not covered by already existing methods, report explicitly and honestly about how the
data sets in question were selected, for example, because they yielded favorable results for the newly proposed
method (Boulesteix et al., 2017); moreover, when proposing a new method, the inclusion of cases in which this
method does not work, that is, “foils,” is particularly informative to clarify the method's actual scope.
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• In case of simulated data, organize a fair comparison in terms of the relation between the methods under study and
the data-generating mechanisms of the simulations, with fair meaning that one should not exclusively rely on mech-
anisms that unilaterally favor methods which explicitly or implicitly assume that these mechanisms are in place.

• Disclose full information on the data sets that are used (making use, whenever meaningful, of platforms such as
GitHub or Gitlab) in view of reproducibility (Dangl & Leisch, 2017; Donoho, 2010; Hofner et al., 2016; Peng, 2011)
and of enabling follow-up research. This means that:
� for simulated data sets, provide implementable data-generating code with full information on cluster-specific

parameters, the data-generating function, random seeds, the type and version of the random number generator,
and so on;

� for empirical data sets, provide the full data sets, with sufficient detail on format, codes used to denote missing
values, pre-processing, and so on.

3.3 | Evaluation measures

3.3.1 | Issues

Regarding formal/technical criteria, optimization performance can be directly measured in terms of the objective func-
tion that is optimized in the data analysis. Examples include the trace of the pooled within-cluster variance–covariance
matrix W that is minimized in k-means (MacQueen, 1967), as well as least squares and likelihood objective functions.
Specific challenges include that their global optimum is usually not known and that their values are often not compara-
ble across different benchmarking setups or data sets. The latter comparability problems can be occasionally solved by
some kind of normalization procedure (see, e.g., Brusco & Steinley, 2007). Regarding formal criteria referring to stability
and replicability, a broad range of (dis)similarity measures could be considered (see, e.g., Breckenridge, 1989; Masoero
et al., 2023; Ullmann et al., 2022).

Regarding criteria related to the goal of the data analysis, we first consider the case in which the primary goal is the
identification of a clustering:

• Various indices of recovery performance may be considered. To measure recovery of the subset of variables that is
truly relevant for the clustering of interest, measures of recall and precision are available (Steinley & Brusco, 2008).
When choosing a measure of cluster membership recovery, one should take the nature of the clustering into account,
with different indices being relevant in a partitioning context (e.g., the adjusted Rand index: Hubert & Arabie, 1985),
in that of hierarchical clusterings (e.g., the cophenetic correlation: Sokal & Rohlf, 1962), and in that of overlapping
clusterings (e.g., the mean absolute difference between the overlapping cluster membership matrix and its true coun-
terpart, minimized across all possible permutations of the clusters: Depril et al., 2012).
More specifically in a partitioning context, cluster membership recovery indices can be roughly categorized into
three approaches: (1) counting object pairs (Warrens & Van der Hoef, 2022), (2) information theory (van der
Hoef & Warrens, 2019), and (3) matching sets (Fränti et al., 2014; Steinley et al., 2016). Most indices are of the
pair-counting type, based on counting pairs of objects placed in identical and different clusters. Prototypical
examples are the (adjusted) Rand index and the Jaccard index. Information-theoretic indices (such as the normal-
ized mutual information) capture the difference in information between two partitions, based on concepts like
mutual information, Shannon entropy, and joint entropy (Pfitzner et al., 2009; van der Hoef & Warrens, 2019).
Finally, set-matching indices (such as the centroid index) are based on matching entire parts of clusters. One may
note that indices based on counting object pairs or information theory are commonly affected by cluster size
imbalance: If cluster sizes are unbalanced these measures will primarily reflect the degree of agreement between
the large clusters.—Indices that are not susceptible to unbalanced cluster sizes are considered in Pfitzner et al.
(2009), Fränti et al. (2014) and Warrens and Van der Hoef (2022).—Finally, the value of the Rand index is deter-
mined to a large extent by the number of object pairs that are not joined in either of the partitions (Warrens &
Van der Hoef, 2022).

• Criteria that involve external validation information other than information on the truth may include effect sizes
(such as R 2- and η 2-type measures) associated with regression analyses, analyses of variance, or discriminant ana-
lyses that relate cluster membership to one or more external validation variables.

10 of 20 VAN MECHELEN ET AL.
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• Alternatively, criteria of different aspects of internal validation can be considered, such as within-cluster homogeneity,
between-cluster separation, and similarity of cluster members to their cluster centroid (Hennig, 2015b, 2015c;
Milligan, 1981a). A broad range of measures exists for this purpose, which can optionally further be combined
(Hennig, 2015a). Examples include the average silhouette width (Rousseeuw, 1987) or a fuzzy extension of it
(Campello & Hruschka, 2006), which, in a partitioning context, measures how similar objects are to their own cluster
compared with other clusters, and the cophenetic correlation coefficient (Sokal & Rohlf, 1962), which, in a hierarchical
clustering context, may also be used to measure the relation between the ultrametric implied by the hierarchical clus-
tering and the proximity data from which this clustering was derived. Admittedly, classical internal validity measures
have recently been criticized with the claim that they often promote clusterings that match expert knowledge poorly
(Gagolewski et al., 2021). This further also led to proposals of novel such indices (e.g., density-based measures that
should also work well in case of clusters with arbitrary shapes: see Tavakkol et al., 2022).

A second group of criteria related to the goal of the data analysis shows up in case of a primary goal other than the
identification of a clustering. Examples of measures include the proportion of explained criterion variance associated
with prediction models and goodness-of-fit measures of (biological, psychological, …) process models that involve some
kind of latent heterogeneity as captured by a clustering.

3.3.2 | Recommendations

• Think very carefully about the nature of the quality criterion/criteria that you choose, with different criteria possibly
implying different optimal clusterings (Hennig, 2015b, 2015c). Choose the criteria in an a priori way, before any com-
parative data analysis. Make your choice explicit along with a justification of it. Consider multiple criteria if appropri-
ate, optionally with an index of their relative importance.

• Select suitable measures for the chosen criteria, meaning that:
� the measures should capture the chosen target criterion/criteria;
� the application of the measures in question in the context under study should be technically correct (e.g., the use

of the adjusted Rand index as a measure of cluster recovery only makes sense within the context of partitions);
� the values of the chosen measures should be comparable across all benchmarking data sets, if necessary after some

kind of normalization.
• Examine the interrelations between the performance regarding different criteria whenever appropriate. For example,

it may be desirable to examine the relation between recovery of the true number of clusters and recovery of the true
cluster memberships, with recovery of the number of clusters in some cases coming with a worse recovery of the
memberships.

3.4 | Analysis, results, and discussion

3.4.1 | Issues

Unconditional conclusions on the performance rank order of the methods included in a benchmarking study with simu-
lated data sets may result from: (1) a consistent rank order across all combinations of individual data sets and criteria
included in that study, or (2) a consistent rank order across all data types and performance criteria, after averaging
across all data sets (or replications) within each data type, or (3) a rank order after averaging across all data sets and
criteria under study. Regarding the second and third option, averaging across data sets may in principle require a suit-
able framework for the population of data sets under study; averaging across criteria is even more challenging because
of obvious commensurability problems with different criteria.—Unfortunately, “convenience averaging,” just ignoring
the raised issues is ubiquitous.—Optionally, the null hypothesis of no differences can be tested in terms of the main
effect of the within-subject method factor in a, possibly factorial, analysis of variance, in which data sets act as experi-
mental units. Alternatively, in case of comparability or commensurability obstacles, some type of consensus ranking of
the methods could be made up, with consensus referring to an aggregation across data types and/or criteria, for exam-
ple, based on Kemeny's axiomatic framework (see also Eugster, 2011).
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All of the above can also be applied to draw unconditional conclusions from benchmarking studies with empirical
data sets (Boulesteix, Stierle, & Hapfelmeier, 2015). Obviously, in the latter case, critical ANOVA assumptions such as
random sampling from a population of real data sets of interest and independent and identically distributed data can be
expected to be violated, with, for example, the sampling process most probably being subjected to several kinds of selec-
tion bias. This needs to be acknowledged. Still, classical power calculations may be meaningful in benchmarking stud-
ies based on real data sets, as they may provide a useful order of magnitude for the required sample sizes and
inferential error rates (Boulesteix, Stierle, & Hapfelmeier, 2015).

With regard to conditional conclusions, in the absence of comparability and commensurability problems,
benchmarking data can be subjected to (repeated measures) analyses of variance. Conditional conclusions then would
be implied by method by data generation and/or criterion factor interactions. (At this point, one should take into
account that testing interactions in a reliable way typically requires larger sample sizes than testing main effects.) In
the presence of comparability or commensurability problems, one may look at the interactions in question in a more
informal, descriptive way.

Finally, all types of conclusions drawn from a benchmarking study only hold conditional on the scope of that study
in terms of the set of methods, data types, and performance criteria included in it. Moreover, whereas within a study,
with a limited number of data sets, data types, and criteria, a consistent rank order of performance may show up, uni-
versal winning methods across all possible data sets, data types and criteria can be shown not to exist, as for a given
data set different quality criteria may imply different optimal clustering solutions (Hennig, 2015b, 2015c).

3.4.2 | Recommendations

• Disclose full information on the code and results of the benchmarking analysis, making use, whenever possible, of
platforms such as GitHub or Gitlab, for the purpose of reproducibility.

• Regarding unconditional statements about performance rank orders of methods:
� Always investigate explicitly whether overall between-method differences are qualified by sizeable between-data

type or between-criterion differences.
� Whenever unconditional statements are reported, make clear whether or not they are based on some kind of aver-

aging, and, if yes, on which one.
� As means can be dominated by a few situations in which methods do very badly, consider, next to averages, more

comprehensive representations of the distribution of results, for example, by means of boxplots.
• If possible, examine main and interaction effects by means of a (repeated measures) factorial analysis of variance,

given its obvious inferential advantages. When doing so, take care of an adequate reporting of effects:
� Go beyond significance levels, which are often meaningless because of large sample sizes in many simulation stud-

ies; report effect sizes (of, e.g., an η 2-type), and consider using a threshold on them to discuss only substantial
effects.

� Go beyond main effects and also look at interactions.
� Inspect the contents of the found effects, test contrasts whenever needed to clarify the patterns involved in them,

and provide an insightful reporting of such patterns; custom-made graphical displays can be helpful in the latter.
• Properly address developers of methods:

� Provide insight into the reasons for the found effects in terms of underlying mechanisms, relations between char-
acteristics of methods and data, and so on.

• Properly address practitioners:
� Explain which method gives the best results for which cluster concepts, for which criteria, and for which types of

data. Qualitative or disordinal method by data characteristic interactions should be highlighted insofar they imply
that the best method differs across criteria and/or data types. Furthermore, if the latter type of interactions shows
up, consider to look for an optimal data-analytic regime, that is to say, a decision rule that specifies, given some
criterion measure, for which data types which methods are to be preferred (Doove et al., 2017).

� From a pragmatic viewpoint, one should focus on recommendations in terms of data characteristics known to the
researcher when carrying out a cluster analysis in practice, outside the context of Monte Carlo simulations (such
as, e.g., data size); in case unknown characteristics (such as, e.g., the true number of clusters) appear to play a crit-
ical role in disordinal method by data characteristic interactions, one may try to replace them by proxies that are
known in data-analytic practice (Doove et al., 2017).
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• Do not overgeneralize obtained results. Never ever forget to mention in the final conclusion the restricted scope of
the problem that has been looked at in the study in terms of selected methods, (types of) data sets, and specific per-
formance criteria being used; highlight the limitations of this scope.

3.5 | Authorship

3.5.1 | Issues

The relationship between the author(s) of the benchmarking study and the authorship of the methods investigated in
this study deserves special attention. Authors who propose new methods are in practice typically obliged to show that
these methods outperform competitors in at least some situations, as a kind of existential justification of these methods.
This, however, may also be looked at as an instance of publication bias, in that it is difficult to publish a paper on a
new method that does not outperform competitors (Boulesteix, Stierle, & Hapfelmeier, 2015). Moreover, in practice, the
need for evidence to justify the existence of a newly proposed method may degenerate into some kind of less warranted
over-optimism, for example, in terms of reports of benchmarking evidence that this method uniformly outperforms a
number of competitors for all criteria and all data types under study. This is further evidenced by a survey conducted
by Boulesteix et al. (2013) of articles published in seven high-ranked computational science journals. From this survey
it appears that papers in which new methods were proposed very often identify these methods as winner in
benchmarking comparisons. In the same vein, Ullmann et al. (2022, 2023) illustrated several mechanisms that may lead
to over-optimistic evaluations of newly introduced clustering methods (see also Nießl et al., 2022).

3.5.2 | Recommendations

• Disclose in benchmarking studies any possible conflicts of interest, such as, for example, a vested interest in some of
the methods under study.

• “Neutral” comparison studies by authors without vested interests and, for the authorship as a collective, ideally with
approximately the same level of familiarity with all methods under study (Boulesteix et al., 2017), should be espe-
cially encouraged. This further implies that journals should welcome reports of them and should beware of any possi-
ble publication biases against neutral comparison studies of existing methods (Boulesteix et al., 2013). In cases where
foils, that is, cases in which a method does not work, were missing in earlier work, it would be helpful if neutral com-
parison studies could contribute some of these.

4 | A FEW ILLUSTRATIVE EXAMPLES

In this section we will briefly discuss a few illustrative examples of benchmarking studies in the clustering area. Rather
than providing self-contained summaries of the studies in question, we will highlight a few distinctive features of each
of them.

4.1 | Steinley (2003)

Steinley (2003) presented an impactful comparison of three widespread commercial software packages and one multi-
start MATLAB routine for k-means analysis, one of the most basic and prototypical methods for cluster analysis. In this
study, he addressed a classical problem in the optimization of overall objective or loss functions in many methods of
cluster analysis, namely the ubiquitous occurrence of locally optimal solutions. For this purpose, he made use of two
empirical data sets and synthetically simulated data on the basis of a full factorial design. Criteria included the value of
the (error sum of squares) loss function for the empirical data sets, and recovery of the true clustering for the simulated
data sets (measured via the adjusted Rand index). The comparison suggested that the commercial packages most often
return locally optimal solutions or solutions that imply a worse recovery of the underlying true clustering than those
produced by a suitable multistart procedure.
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4.2 | Schepers et al. (2006)

Schepers et al. (2006) set up a four-part benchmarking study to investigate the sensitivity of 49 different alternating
least squares (ALS) partitioning algorithms for multiway data to local optima. The 49 algorithms were obtained by
orthogonally combining seven types of initializations with seven combinations of an ALS-scheme and a procedure
to deal with empty clusters. As primary criterion measure, the authors calculated for each data set whether or not
an algorithm attained the optimal value of the least squares loss function that was found across all analyses of that
data set (as proxy for the globally optimal loss value for that data set). Interestingly, the rank order of the algo-
rithms found in a study with synthetically simulated data sets (Part 1) did not correspond to the rank order of the
same algorithms when applied to empirical data (Part 2). Parametric bootstrap tests (Part 3) revealed that assump-
tions of the stochastic model underlying the data-generating mechanism used in Part 1 were violated in the empiri-
cal data of Part 2. In a new study with simulated data using a modified data-generating mechanism (Part 4), this
hypothesis was confirmed.

4.3 | Steinley and Brusco (2008)

Steinley and Brusco (2008) set up an extensive comparison of eight prespecified combinations of a procedure for model-
based or non-model-based clustering with a variable selection procedure (without orthogonally combining clustering
and variable selection procedures). For this comparison, they made use of benchmarking data obtained from synthetic
simulations with OCLUS according to a full factorial design with 6804 conditions and three replications per cell; this
yielded 20,412 simulated data sets. Subsequently, they applied all eight methods under study to each data set (under the
assumption that the true number of clusters was known), which resulted in 163,296 clustering runs. Recovery of the
subset of truly relevant variables was evaluated in terms of precision and recall, and recovery of the true cluster mem-
bership in terms of the adjusted Rand index. Recovery data were further subjected to factorial multivariate analyses of
variance, along with a careful monitoring of η 2-type effect sizes.

4.4 | Arbelaitz et al. (2013)

In a neutral benchmarking study, Arbelaitz et al. (2013) compared 30 internal validity indices. Given a collection of par-
titions with different numbers of clusters as obtained from subjecting a given data set (with a known underlying true
partition) to some given clustering method, the key performance aspect focused on was whether or not an internal
validity index under study attained its optimal value for the partition that was most similar to the true partition
(in terms of some partition similarity index such as the adjusted Rand index). Unlike in many benchmarking studies
that evaluate performance in terms of recovery of the true number of clusters, Arbelaitz et al. (2013) left room for the
partition that is most similar to the true partition to comprise a number of clusters that differed from the true number
of clusters. They further made use of both synthetically simulated benchmarking data (according to a full factorial
design) and real benchmarking data sets with a known truth. Each data set was subjected to three different clustering
algorithms, and partition similarity was evaluated with three different measures (two of which were of the object pair
counting type and one of the information-theoretic type). In the discussion, the authors paid attention to various inter-
actions that showed up in the results.

4.5 | Anderlucci and Hennig (2014)

Anderlucci and Hennig (2014) compared two approaches for clustering categorical data that are based on totally
different conceptual frameworks: partitioning around medoids (Kaufman & Rousseeuw, 1990), which attempts to
produce homogeneous clusters with low within-cluster dissimilarities, and latent class modeling (Vermunt &
Magidson, 2002), which tries to estimate an underlying mixture model. In the study, which relied on synthetically
simulated data according to a full factorial design, two different criteria were used to evaluate each analysis
result, one corresponding to each approach: the average silhouette width for finding clusters that are homoge-
neous and well-separated from each other in terms of dissimilarities, and the adjusted Rand index to measure the
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recovery of the clusters that were true according to the underlying mixture model. One result was that the latent
class approach was in most situations surprisingly competitive regarding the average silhouette width, which
implies that the “home advantage” of partitioning around medoids for this criterion was less outspoken than
expected.

4.6 | Rossbroich et al. (2022)

Rossbroich et al. (2022) addressed the (underinvestigated) issue of selecting the number of clusters in an overlapping
clustering model (ADPROCLUS: Depril et al., 2008; Mirkin, 1987). For this purpose, they proposed and compared
13 model selection strategies, 11 of which were (minor or major) adaptations of similar strategies for partitioning
models, and 2 of which were crossvalidation-based. For the comparison, the authors made use of benchmarking data
obtained from synthetic simulations with a full factorial design. Critical criterion measures pertained to recovery of the
true number of clusters in terms of accuracy (whether or not a given strategy yielded for a given dataset the true num-
ber of clusters) and precision (i.e., the absolute difference between the true and estimated numbers of clusters). Results
were subjected to (repeated measures) analyses of variance. Particularly strong aspects of the study included a careful
discussion and formulation of conclusions, with cautionary notes about the performance of all methods (including the
marginally best one) in case of data sets with fewer variables and data sets with higher noise levels, about the occur-
rence of local minima, and about a possible lack of generalizability of the found results to larger data sets than the ones
used in the benchmarking study.

5 | CONCLUSION

The primary take home message to investigators of clustering methods is that we think it is desirable to invest in
benchmarking. This should not only be an absolute requisite when proposing new methods, but should likewise be
taken care of in follow up research, particularly also by authors who were not involved in the development of the
methods under study.

If we further analyze the specific recommendations for good research practices listed in the present paper, we may
conclude that many of them are relevant for benchmarking in statistics, machine learning, and data mining in general.
Examples include:

• Do include in any benchmark attempt known strong competitors for the target methods under study.
• Orthogonally manipulate aspects of methods and characteristics of simulated benchmark data whenever possible.
• Make full information available on methods (code, values of tuning parameters etc.) and benchmark data in view of

full reproducibility.
• Make use of a suitable combination of simulations and empirical data when creating a collection of benchmark

data sets.
• Take care of fairness towards all methods involved when setting up benchmark comparisons.
• Always examine whether overall between-method differences in a benchmarking study are qualified by sizeable

between-data type or between-criterion differences.
• Disclose any possible conflicts of interest.
• Journals should especially welcome “neutral” comparisons by authors without vested interests in any of the methods

under study.

Apart from this, we also listed several specific recommendations that are more typical for the clustering domain.
Perhaps the most fundamental of these is to go for a deep reflection of what constitutes, within a particular context,
and given particular research questions and aims, a good or desirable clustering. The result of this may have far-
reaching consequences for the choice of relevant methods, benchmark data sets, and evaluation criteria. Much of this
fundamental recommendation may be linked to the lack of an obvious metric for a performance evaluation of methods
for unsupervised statistical learning in general and for clustering in particular. Such a lack could be perceived as a bot-
tleneck. However, it could also be perceived as an opportunity and even as a blessing, which could finally lead to
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insights that may be inspiring for the clustering domain as well as for many other subdomains of statistics, machine
learning, and data mining (Box 1).
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BOX 1 Recommendations for method benchmarking in statistics, machine learning, carriage
return and data mining

General recommendations:
• Do include in any benchmark attempt known strong competitors for the target methods under study.
• Orthogonally manipulate aspects of methods and characteristics of simulated benchmark data whenever

possible.
• Make full information available on methods (code, values of tuning parameters, etc.) and benchmark data in

view of full reproducibility.
• Make use of a suitable combination of simulations and empirical data when creating a collection of bench-

mark data sets.
• Take care of fairness towards all methods involved when setting up benchmark comparisons.
• Always examine whether overall between-method differences in a benchmarking study are qualified by size-

able between-data type or between-criterion differences.
• Disclose any possible conflicts of interest.
• Journals should especially welcome “neutral” comparisons by authors without vested interests in any of the

methods under study.

Specific recommendation for benchmarking in cluster analysis:
• Go for a deep reflection of what constitutes, within a particular context, and given particular research ques-

tions and aims, a good or desirable clustering.
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