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Adrien Pavao, Zhengying Liu and Isabelle Guyon
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Abstract. We address the problem of selecting a winning algorithm
in a challenge or benchmark. While evaluations of algorithms carried
out by third party organizers eliminate the inventor-evaluator bias, little
attention has been paid to the risk of over-fitting the winner’s selection
by the organizers. In this paper, we carry out an empirical evaluation
using the results of several challenges and benchmarks, evidencing this
phenomenon. We show that a heuristic commonly used by organizers
consisting of pre-filtering participants using a trial run, reduces over-fitting.
We formalize this method and derive a semi-empirical formula to determine
the optimal number of top k participants to retain from the trial run.

1 Introduction

Competitions and benchmarks in Artificial Intelligence (AI), Machine Learning
(ML), and other scientific domains, also called challenges or contests, have been
playing an increasing role in research and development. Hundreds of competitions
are organized each year on platforms such as Kaggle, AICrowd, CodaLab, and
others. Competitions are now part of most major conferences and their protocols
are peer reviewed, to increase the rigor of evaluations and check such things as
sufficient test set sizes and possible bias in data. The code of the winners is
generally open-sourced, to maximize their impact. One example often cited is
the start of the “deep learning era” usually traced back to the success of AlexNet
in the ImageNet benchmark [5].

The ambition of competitions is generally to recommend algorithms that could
perform well on new tasks resembling that of the competition. Thus competitions
are a problem in which the organizers perform a learning task: from the tasks
of the challenge, they select an algorithm that should perform well on new
future tasks. Organizer over-fitting occurs when the number of participants is
large and rankings are noisy, increasing the chance of poorly selecting a winner.
Competition organizers face a sad paradox: the larger the number of participants,
the more “successful” their competition, but also the greater the risk to overfit the
particular competition setting.

A heuristic often employed in sports, chess, and other types of competition is
to use eliminatory trial runs to filter participants for the final competition phase.
In this paper, we investigate this strategy in the context of 2-phase machine
learning competitions. To alleviate over-fitting the challenge setting, we propose
to use the development phase to filter participants before entering the final phase.



2 Related problems and related work

The algorithm selection problem can be traced back at least as far as 1976 [11]. Its
relationship with the problem of meta-learning and the risk of over-fitting at the
meta-level has been pointed out [7]. However, to the best of our knowledge, this
is the first paper that considers judging competitions or conducting a benchmark
as an algorithm selection problem, and considers the risk of organizer over-fitting.
This paper addresses the problem of determining a single winner from rankings
already obtained in two-phase competitions. We do not address here the process
of generating a sound and reproducible ranking. However, many related problems
have been investigated in the literature: the test set size needed to get good
error rate estimations [4], score distributions for stochastic algorithms [10], the
selection of the worst run to reduce chance in competitions [2], or the problem of
fusing scores from multiple “judges” (multiple tasks and/or multiple metrics) [8].

A question related to the problem we address is that of “out of domain
generalization”, which has been addressed from a variety of standpoints (although
not in the context of judging competitions). For example, recent work has been
warning about the danger that meta-learning algorithms may overfit the set of
meta-training tasks [13]. Propositions to reduce over-fitting at the “meta-level”
include algorithm-specific regularization methods like dropout [15], Bayesian
mechanisms [16], and meta-augmentation of datasets [9] (which could easily be
applied to challenges). Learning-theoretic bounds on the meta-generalization
gap have also been proposed [1], introducing prior knowledge through setting an
experience-dependent prior for novel task. This relates to the algorithm proposed
in this paper: we use the development phase as a prior to select the winner in
the final phase.

3 Proposed algorithm: top-k

In the sequel, we consider multiple phase competitions or benchmarks, in which
participants are ranked multiple times. We assume that such rankings are drawn
i.i.d. from a distribution of rankings. This abstracts from the need of describing
more precisely how such rankings are obtained, which may widely vary from one
competition to another. We revisit the i.i.d. assumption in Section 5.

In a two-phase competition, the development phase is the “trial run” during
which participant are filtered, and the subsequent final phase is used to determine
the winner. The proposed algorithm (Algorithm 1) retains the top k participants
in the development phase, and then selects the winner among them on the basis
of the best rank in the final phase.

Clearly, keeping only a few participants in the final phase may save time and
resources and may be logistically necessary if the final phase is a live competition.
The question addressed in the remainder of the paper is the following: does the
top-k algorithm yield as good or better (meta-)generalization than the “vanilla”
method of simply selecting the winner in the final phase, without pre-filtering?



Algorithm 1: top-k method
Let: n ∈ N, n ≥ 1, be the number of participants,

k ∈ N, 1 ≤ k ≤ n, be a chosen quota,
rankD(i) be the rank of participant i in the development phase,
rankF (i) be the rank of participant i in the final phase, i = 1 · · ·n.

Select the winner as: i∗ = argminrankD(i)≤k rankF (i)

4 Empirical results

Although, from the participants’ point of view, their algorithms are being tested
in the final phase, from the organizers’ point of view the final phase
is used for (meta-)training1. Hence we need a “post-challenge phase” for
(meta-)testing, to evaluate meta-generalization, if we do not have direct access to
the distribution of rankings (which is only possible for synthetic data). We plot
meta-learning curves as a function of k, the number of participants pre-selected
in the top-k of the development phase:

- Meta-training error: score in the final phase of the declared winner.
- Meta-test error: score in the post-challenge phase of the declared winner.
- Generalization gap: difference between meta-test and meta-training error.

4.1 Experiments on real data

We ran the top-k algorithm on 4 real meta-datasets coming from previously run
challenges or benchmarks: AutoDL, AutoML, OpenML and Statlog, provided
by [14]. We simulate phases by averaging the scores on subsets of tasks. The
learning curves shown in Figure 1 were obtained by averaging over 10000 data-
split trials. We first observe that the meta-training error monotonically decreases
as a function of k. This is to be expected since the meta-training error is the
minimum score in the final phase of the top-k in the development phase: as k
increases, one should get smaller and smaller scores by taking the minimum over
a larger subset of values. The meta-training error basically varies with 1

k [3]. We
also observe that the meta-test error goes through a minimum (desired
behavior). The last point represents the vanilla method consisting in selecting
the candidate with the smallest score in the final phase. We remark that the first
and last point have similar values. This is not surprising since the first point is
analogous to the vanilla method, but using the development phase to select the
winner instead of the final phase.

4.2 Experiments on synthetic data

To gain more insight into the problem, and understand under which condition
the top-k method allows us to meta-generalize better than simply selecting the

1The development phase during which the participants “practice” (i.e. perform a form of
training) is used as a prior by the organizers.



(a) REAL data (b) SYNTHETIC data

Fig. 1: Learning curves with top-k method (averaged over 10000 trials):
Meta-training error, Meta-test error, Generalization gap. Rank error is the rank
r of the selected winner in F and P, normalized by (r − 1)/(n − 1). The blue
vertical bar marks the optimum, s is the number of random swaps, d is the
average Kendall τ distance [6] between phase rankings, and the grey vertical bar
marks k∗ ≃ 1 + d

n , an estimation of the optimal value of k.



winner in the final phase, we generated synthetic data, as follows:
Consider a competition with n ∈ N participants. Assume that there is an

ideal true (but unknown) ranking of participants g (g is for “generalization”). A
synthetic empirical ranking obtained in a challenge phase is generated from g
by repeated permutations of pairs of neighbors: a position i is drawn at random
from {1, · · · , n− 1} and the participants i and i+ 1 are exchanged. We repeat
this operation s times. The smaller s, the more the empirical rankings will be
correlated to the true ranking g (and to one another). We generate in this way
3 fake participant rankings, one for each phase: D, F , and P . We can then
perform similar experiments as with real data and compute meta-training error
and meta-test error of the top-k method.

We show in Figure 1 the results of experiments on synthetic data next to
those on real data. On each row, we took care of matching the distance d between
phase rankings (as measured by the Kendall τ). We are pleased to see that
qualitatively the real and synthetic data curves remarkably resemble one another:
monotonic decrease of meta-training curve; meta-test curve going through an
optimum; first and last point of meta-test curve nearly identical (performance of
vanilla method). We observe that the optimum value of k is relatively small, even
for large numbers of participants (last row). It increases with d, the distance
between rankings. While s (the number of swaps applied to the ideal ranking, in
synthetic data) can go to infinity, the expected value of d is bounded by half the
Kendall τ distance between a ranking and its reverse, i.e. n(n−1)

4 . Noting that
the random process to create artificial rankings is essentially a random walk of
the winner, we propose a semi-empirical formula for the optimum of k2:

k∗ ≃ 1 +
d

n

We validate the formula using simulations3.

5 Discussion and conclusion

The remarkable resemblance between real and synthetic curves when the Kendall
τ distance d between phase rankings is matched, allowed us to propose a semi-
empirical formula to predict the optimal value of the number of challenge par-
ticipants k selected during the “trial run”: k∗ ≃ 1 + d

n . However, this requires
knowing d a priori or estimating it. A more conservative choice of k may anyway
be preferable in practice, because when rankings are “noisy” (d large), there is a
lot of variance (not visible in our experimental results, which are averaged over
10000 trials). So, instead of using k∗, we advocate eliminating participants who
do not outperform the baseline methods provided by the organizers with the
“starting kit” (which may include well performing methods from previous chal-
lenges). This should be more acceptable to the participants than setting a hard

2Although regular random walk calculations are simple, the boundary conditions imposed
in this problem increase the difficulty of obtaining a simple exact formula.

3The code to reproduce all experiments and supplemental material can be found at
https://github.com/didayolo/metagen-esann-2022.

https://github.com/didayolo/metagen-esann-2022


threshold on the number of entrants of the final phase, and will at least eliminate
the least serious participants who just submit the “starting kit”. The validity of
our paradigm rests on the assumptions that rankings in various phases are drawn
i.i.d. from a distribution of rankings, and without ties. This assumption may
be violated if, for instance, the tasks of the development phase and final phase
are of different nature or difficulty, or if the participants overfit the tasks of the
development phase (e.g. by making many submissions and seeking feed-back from
a leaderboard). This last problem does not seem to be severe in practice [12].

Further work include: Extending to 3-best selection (instead of winner selec-
tion); Handling ranking with ties; Combining top-k with meta-cross-validation;
Other winner selection methods; Considering more than two phases; Finalising
the formal analysis of the synthetic problem provided in supplemental material.
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