371 research outputs found

    Habitat, Fish Species, and Fish Assemblage Associations of the Topeka Shiner in West-Central Iowa

    Get PDF
    Our goal was to identify habitat, fish species, and fish assemblages associated with the occurrence of Topeka Shiners Notropis topeka in stream and off-channel habitat (OCH) of west-central Iowa. Fish assemblages and habitat characteristics were estimated in 67 stream and 27OCHsites during 2010–2011. Topeka Shiners were sampled in 52% of OCH sites, but in only 9% of stream sites, which supports the hypothesis that OCH is an important component of their life history. Fish assemblages containing Topeka Shiners were different from those that did not contain Topeka Shiners in OCH sites, but this was not evident in stream sites. Results from logistic regression models suggested that Topeka Shiner presence was associated with increased submerged vegetation and abundance of Fathead Minnow Pimephales promelas. Contrary to the findings of other studies, the abundance of large piscivorous fishes was not associated with the occurrence of Topeka Shiners. Our results provide new information about the biology and life history of the Topeka Shiner that will guide habitat restoration and other recovery efforts

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    A Diverse Group of Previously Unrecognized Human Rhinoviruses Are Common Causes of Respiratory Illnesses in Infants

    Get PDF
    Human rhinoviruses (HRVs) are the most prevalent human pathogens, and consist of 101 serotypes that are classified into groups A and B according to sequence variations. HRV infections cause a wide spectrum of clinical outcomes ranging from asymptomatic infection to severe lower respiratory symptoms. Defining the role of specific strains in various HRV illnesses has been difficult because traditional serology, which requires viral culture and neutralization tests using 101 serotype-specific antisera, is insensitive and laborious.To directly type HRVs in nasal secretions of infants with frequent respiratory illnesses, we developed a sensitive molecular typing assay based on phylogenetic comparisons of a 260-bp variable sequence in the 5' noncoding region with homologous sequences of the 101 known serotypes. Nasal samples from 26 infants were first tested with a multiplex PCR assay for respiratory viruses, and HRV was the most common virus found (108 of 181 samples). Typing was completed for 101 samples and 103 HRVs were identified. Surprisingly, 54 (52.4%) HRVs did not match any of the known serotypes and had 12-35% nucleotide divergence from the nearest reference HRVs. Of these novel viruses, 9 strains (17 HRVs) segregated from HRVA, HRVB and human enterovirus into a distinct genetic group ("C"). None of these new strains could be cultured in traditional cell lines.By molecular analysis, over 50% of HRV detected in sick infants were previously unrecognized strains, including 9 strains that may represent a new HRV group. These findings indicate that the number of HRV strains is considerably larger than the 101 serotypes identified with traditional diagnostic techniques, and provide evidence of a new HRV group

    Short and long term effects of a lifestyle intervention for construction workers at risk for cardiovascular disease: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of overweight and elevated cardiovascular disease (CVD) risk among workers in the construction industry is relatively high. Improving lifestyle lowers CVD risk and may have work-related benefits. The purpose of the study was to evaluate the effects on physical activity (PA), diet, and smoking of a lifestyle intervention consisting of individual counseling among male workers in the construction industry with an elevated risk of cardiovascular disease (CVD).</p> <p>Methods</p> <p>In a randomized controlled trial including 816 male blue- and white-collar workers in the construction industry with an elevated risk of CVD, usual care was compared to a 6-month lifestyle intervention. The intervention consisted of individual counseling using motivational interviewing techniques, and was delivered by an occupational physician or occupational nurse. In three face to face and four telephone contacts, the participant's risk profile, personal determinants, and barriers for behavior change were discussed, and personal goals were set. Participants chose to aim at either diet and PA, or smoking. Data were collected at baseline and after six and 12 months, by means of a questionnaire. To analyse the data, linear and logistic regression analyses were performed.</p> <p>Results</p> <p>The intervention had a statistically significant beneficial effect on snack intake (β-1.9, 95%CI -3.7; -0.02) and fruit intake (β 1.7, 95%CI 0.6; 2.9) at 6 months. The effect on snack intake was sustained until 12 months; 6 months after the intervention had ended (β -1.9, 95%CI -3.6; -0.2). The intervention effects on leisure time PA and metabolic equivalent-minutes were not statistically significant. The beneficial effect on smoking was statistically significant at 6 (OR smoking 0.3, 95%CI 0.1;0.7), but not at 12 months (OR 0.8, 95%CI 0.4; 1.6).</p> <p>Conclusions</p> <p>Beneficial effects on smoking, fruit, and snack intake can be achieved by an individual-based lifestyle intervention among male construction workers with an elevated risk of CVD. Future research should be done on strategies to improve leisure time PA and on determinants of maintenance of changed behavior. Considering the rising prevalence of unhealthy lifestyle and CVD, especially in the aging population, implementation of this intervention in the occupational health care setting is recommended.</p> <p>Trial registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN60545588">ISRCTN60545588</a></p

    The Small Molecule Inhibitor QLT0267 Radiosensitizes Squamous Cell Carcinoma Cells of the Head and Neck

    Get PDF
    BACKGROUND: The constant increase of cancer cell resistance to radio- and chemotherapy hampers improvement of patient survival and requires novel targeting approaches. Integrin-Linked Kinase (ILK) has been postulated as potent druggable cancer target. On the basis of our previous findings clearly showing that ILK transduces antisurvival signals in cells exposed to ionizing radiation, this study evaluated the impact of the small molecule inhibitor QLT0267, reported as putative ILK inhibitor, on the cellular radiation survival response of human head and neck squamous cell carcinoma cells (hHNSCC). METHODOLOGY/PRINCIPAL FINDINGS: Parental FaDu cells and FaDu cells stably transfected with a constitutively active ILK mutant (FaDu-IH) or empty vectors, UTSCC45 cells, ILK(floxed/floxed(fl/fl)) and ILK(-/-) mouse fibroblasts were used. Cells grew either two-dimensionally (2D) on or three-dimensionally (3D) in laminin-rich extracellular matrix. Cells were treated with QLT0267 alone or in combination with irradiation (X-rays, 0-6 Gy single dose). ILK knockdown was achieved by small interfering RNA transfection. ILK kinase activity, clonogenic survival, number of residual DNA double strand breaks (rDSB; gammaH2AX/53BP1 foci assay), cell cycle distribution, protein expression and phosphorylation (e.g. Akt, p44/42 mitogen-activated protein kinase (MAPK)) were measured. Data on ILK kinase activity and phosphorylation of Akt and p44/42 MAPK revealed a broad inhibitory spectrum of QLT0267 without specificity for ILK. QLT0267 significantly reduced basal cell survival and enhanced the radiosensitivity of FaDu and UTSCC45 cells in a time- and concentration-dependent manner. QLT0267 exerted differential, cell culture model-dependent effects with regard to radiogenic rDSB and accumulation of cells in the G2 cell cycle phase. Relative to corresponding controls, FaDu-IH and ILK(fl/fl) fibroblasts showed enhanced radiosensitivity, which failed to be antagonized by QLT0267. A knockdown of ILK revealed no change in clonogenic survival of the tested cell lines as compared to controls. CONCLUSIONS/SIGNIFICANCE: Our data clearly show that the small molecule inhibitor QLT0267 has potent cytotoxic and radiosensitizing capability in hHNSCC cells. However, QLT0267 is not specific for ILK. Further in vitro and in vivo studies are necessary to clarify the potential of QLT0267 as a targeted therapeutic in the clinic

    Genome of the Asian Longhorned Beetle (\u3cem\u3eAnoplophora glabripennis\u3c/em\u3e), a Globally Significant Invasive Species, Reveals Key Functional and Evolutionary Innovations at the Beetle-Plant Interface

    Get PDF
    Background: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. Results: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Conclusions: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants

    Common Molecular Etiologies Are Rare in Nonsyndromic Tibetan Chinese Patients with Hearing Impairment

    Get PDF
    Background: Thirty thousand infants are born every year with congenital hearing impairment in mainland China. Racial and regional factors are important in clinical diagnosis of genetic deafness. However, molecular etiology of hearing impairment in the Tibetan Chinese population living in the Tibetan Plateau has not been investigated. To provide appropriate genetic testing and counseling to Tibetan families, we investigated molecular etiology of nonsyndromic deafness in this population. Methods: A total of 114 unrelated deaf Tibetan children from the Tibet Autonomous Region were enrolled. Five prominent deafness-related genes, GJB2, SLC26A4, GJB6, POU3F4, and mtDNA 12S rRNA, were analyzed. Inner ear development was evaluated by temporal CT. A total of 106 Tibetan hearing normal individuals were included as genetic controls. For radiological comparison, 120 patients, mainly of Han ethnicity, with sensorineural hearing loss were analyzed by temporal CT. Results: None of the Tibetan patients carried diallelic GJB2 or SLC26A4 mutations. Two patients with a history of aminoglycoside usage carried homogeneous mtDNA 12S rRNA A1555G mutation. Two controls were homozygous for 12S rRNA A1555G. There were no mutations in GJB6 or POU3F4. A diagnosis of inner ear malformation was made in 20.18 % of the Tibetan patients and 21.67 % of the Han deaf group. Enlarged vestibular aqueduct, the most common inner ear deformity, was not found in theTibetan patients, but was seen in 18.33 % of the Han patients. Common molecular etiologies

    Genome-enabled insights into the biology of thrips as crop pests

    Get PDF
    Background The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. Results We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. Conclusions Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species
    corecore